Finite State Machines Play Extensive-Form Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00348090" target="_blank" >RIV/68407700:21230/20:00348090 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/abs/10.1145/3391403.3399517" target="_blank" >https://dl.acm.org/doi/abs/10.1145/3391403.3399517</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3391403.3399517" target="_blank" >10.1145/3391403.3399517</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite State Machines Play Extensive-Form Games
Popis výsledku v původním jazyce
Finite state machines are a well-known representation of strategies in (in)finitely repeated or stochastic games. Actions of players correspond to states in the machine and the transition between machine-states are caused by observations in the game. For extensive-form games (EFGs), machines can act as a formal grounding for abstraction methods used for solving large EFGs and as a domain-independent approach for generating sufficiently compact abstractions. We show that using machines of a restricted size in EFGs can both (i) reduce the theoretical complexity of computing some solution concepts, including Strong Stackelberg Equilibrium (SSE), (ii) as well as bring new practical algorithms that compute near-optimal equilibria considering only a fraction of strategy space. Our contributions include (1) formal definition and theoretical characterization of machine strategies in EFGs, (2) formal definitions and complexity analysis for solution concepts and their computation when restricted to small classes of machines, (3) new algorithms for computing SSE in general-sum games and Nash Equilibrium in zero-sum games that both directly use the concept of machines. Experimental results on two different domains show that the algorithms compute near-optimal strategies and achieve significantly better scalability compared to previous state-of-the-art algorithms.
Název v anglickém jazyce
Finite State Machines Play Extensive-Form Games
Popis výsledku anglicky
Finite state machines are a well-known representation of strategies in (in)finitely repeated or stochastic games. Actions of players correspond to states in the machine and the transition between machine-states are caused by observations in the game. For extensive-form games (EFGs), machines can act as a formal grounding for abstraction methods used for solving large EFGs and as a domain-independent approach for generating sufficiently compact abstractions. We show that using machines of a restricted size in EFGs can both (i) reduce the theoretical complexity of computing some solution concepts, including Strong Stackelberg Equilibrium (SSE), (ii) as well as bring new practical algorithms that compute near-optimal equilibria considering only a fraction of strategy space. Our contributions include (1) formal definition and theoretical characterization of machine strategies in EFGs, (2) formal definitions and complexity analysis for solution concepts and their computation when restricted to small classes of machines, (3) new algorithms for computing SSE in general-sum games and Nash Equilibrium in zero-sum games that both directly use the concept of machines. Experimental results on two different domains show that the algorithms compute near-optimal strategies and achieve significantly better scalability compared to previous state-of-the-art algorithms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-24384Y" target="_blank" >GJ19-24384Y: Výpočet rovnovážných strategií v dynamických hrách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EC '20: Proceedings of the 21st ACM Conference on Economics and Computation
ISBN
978-1-4503-7975-5
ISSN
—
e-ISSN
—
Počet stran výsledku
25
Strana od-do
509-533
Název nakladatele
Association for Computing Machinery
Místo vydání
—
Místo konání akce
Virtual On-line
Datum konání akce
13. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—