Computation of lyapunov functions under state constraints using semidefinite programming hierarchies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00355986" target="_blank" >RIV/68407700:21230/20:00355986 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ifacol.2020.12.1746" target="_blank" >http://dx.doi.org/10.1016/j.ifacol.2020.12.1746</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2020.12.1746" target="_blank" >10.1016/j.ifacol.2020.12.1746</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computation of lyapunov functions under state constraints using semidefinite programming hierarchies
Popis výsledku v původním jazyce
We provide algorithms for computing a Lyapunov function for a class of systems where the state trajectories are constrained to evolve within a closed convex set. The dynamical systems that we consider comprise a differential equation which ensures continuous evolution within the domain, and a normal cone inclusion which ensures that the state trajectory remains within a prespecified set at all times. Finding a Lyapunov function for such a system boils down to finding a function which satisfies certain inequalities on the admissible set of state constraints. It is well-known that this problem, despite being convex, is computationally difficult. For conic constraints, we provide a discretization algorithm based on simplicial partitioning of a simplex, so that the search of desired function is addressed by constructing a hierarchy (associated with the diameter of the cells in the partition) of linear programs. Our second algorithm is tailored to semi-algebraic sets, where a hierarchy of semidefinite programs is constructed to compute Lyapunov functions as a sum-of-squares polynomial.
Název v anglickém jazyce
Computation of lyapunov functions under state constraints using semidefinite programming hierarchies
Popis výsledku anglicky
We provide algorithms for computing a Lyapunov function for a class of systems where the state trajectories are constrained to evolve within a closed convex set. The dynamical systems that we consider comprise a differential equation which ensures continuous evolution within the domain, and a normal cone inclusion which ensures that the state trajectory remains within a prespecified set at all times. Finding a Lyapunov function for such a system boils down to finding a function which satisfies certain inequalities on the admissible set of state constraints. It is well-known that this problem, despite being convex, is computationally difficult. For conic constraints, we provide a discretization algorithm based on simplicial partitioning of a simplex, so that the search of desired function is addressed by constructing a hierarchy (associated with the diameter of the cells in the partition) of linear programs. Our second algorithm is tailored to semi-algebraic sets, where a hierarchy of semidefinite programs is constructed to compute Lyapunov functions as a sum-of-squares polynomial.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IFAC World Congress 2020
ISBN
—
ISSN
2405-8963
e-ISSN
2405-8963
Počet stran výsledku
6
Strana od-do
6281-6286
Název nakladatele
IFAC
Místo vydání
Laxenburg
Místo konání akce
Berlín
Datum konání akce
11. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000652593000302