Cone-Copositive Lyapunov Functions for Complementarity Systems: Converse Result and Polynomial Approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00356559" target="_blank" >RIV/68407700:21230/22:00356559 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TAC.2021.3061557" target="_blank" >https://doi.org/10.1109/TAC.2021.3061557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2021.3061557" target="_blank" >10.1109/TAC.2021.3061557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cone-Copositive Lyapunov Functions for Complementarity Systems: Converse Result and Polynomial Approximation
Popis výsledku v původním jazyce
This article establishes the existence of Lyapunov functions for analyzing the stability of a class of state-constrained systems, and it describes algorithms for their numerical computation. The system model consists of a differential equation coupled with a set-valued relation that introduces discontinuities in the vector field at the boundaries of the constraint set. In particular, the set-valued relation is described by the subdifferential of the indicator function of a closed convex cone, which results in a cone-complementarity system. The question of analyzing the stability of such systems is addressed by constructing cone-copositive Lyapunov functions. As a first analytical result, we show that exponentially stable complementarity systems always admit a continuously differentiable cone-copositive Lyapunov function. Putting some more structure on the system vector field, such as homogeneity, we can show that the aforementioned functions can be approximated by a rational function of cone-copositive homogeneous polynomials. This latter class of functions is seen to be particularly amenable for numerical computation as we provide two types of algorithms for precisely that purpose. These algorithms consist of a hierarchy of either linear or semidefinite optimization problems for computing the desired cone-copositive Lyapunov function. Some examples are given to illustrate our approach.
Název v anglickém jazyce
Cone-Copositive Lyapunov Functions for Complementarity Systems: Converse Result and Polynomial Approximation
Popis výsledku anglicky
This article establishes the existence of Lyapunov functions for analyzing the stability of a class of state-constrained systems, and it describes algorithms for their numerical computation. The system model consists of a differential equation coupled with a set-valued relation that introduces discontinuities in the vector field at the boundaries of the constraint set. In particular, the set-valued relation is described by the subdifferential of the indicator function of a closed convex cone, which results in a cone-complementarity system. The question of analyzing the stability of such systems is addressed by constructing cone-copositive Lyapunov functions. As a first analytical result, we show that exponentially stable complementarity systems always admit a continuously differentiable cone-copositive Lyapunov function. Putting some more structure on the system vector field, such as homogeneity, we can show that the aforementioned functions can be approximated by a rational function of cone-copositive homogeneous polynomials. This latter class of functions is seen to be particularly amenable for numerical computation as we provide two types of algorithms for precisely that purpose. These algorithms consist of a hierarchy of either linear or semidefinite optimization problems for computing the desired cone-copositive Lyapunov function. Some examples are given to illustrate our approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
1558-2523
Svazek periodika
67
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1253-1268
Kód UT WoS článku
000761219400016
EID výsledku v databázi Scopus
2-s2.0-85101773828