Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351168" target="_blank" >RIV/68407700:21230/21:00351168 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/17092" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/17092</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent
Popis výsledku v původním jazyce
One key element behind the recent progress of machine learning has been the ability to train machine learning models in large-scale distributed shared-memory and message-passing environments. Most of these models are trained employing variants of stochastic gradient descent (SGD) based optimization, but most methods involve some type of consistency relaxation relative to sequential SGD, to mitigate its large communication or synchronization costs at scale. In this paper, we introduce a general consistency condition covering communication-reduced and asynchronous distributed SGD implementations. Our framework, called elastic consistency, decouples the system-specific aspects of the implementation from the SGD convergence requirements, giving a general way to obtain convergence bounds for a wide variety of distributed SGD methods used in practice. Elastic consistency can be used to re-derive or improve several previous convergence bounds in message-passing and shared-memory settings, but also to analyze new models and distribution schemes. As a direct application, we propose and analyze a new synchronization-avoiding scheduling scheme for distributed SGD, and show that it can be used to efficiently train deep convolutional models for image classification.
Název v anglickém jazyce
Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent
Popis výsledku anglicky
One key element behind the recent progress of machine learning has been the ability to train machine learning models in large-scale distributed shared-memory and message-passing environments. Most of these models are trained employing variants of stochastic gradient descent (SGD) based optimization, but most methods involve some type of consistency relaxation relative to sequential SGD, to mitigate its large communication or synchronization costs at scale. In this paper, we introduce a general consistency condition covering communication-reduced and asynchronous distributed SGD implementations. Our framework, called elastic consistency, decouples the system-specific aspects of the implementation from the SGD convergence requirements, giving a general way to obtain convergence bounds for a wide variety of distributed SGD methods used in practice. Elastic consistency can be used to re-derive or improve several previous convergence bounds in message-passing and shared-memory settings, but also to analyze new models and distribution schemes. As a direct application, we propose and analyze a new synchronization-avoiding scheduling scheme for distributed SGD, and show that it can be used to efficiently train deep convolutional models for image classification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-866-4
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
9037-9045
Název nakladatele
Association for the Advancement of Artificial Intelligence (AAAI)
Místo vydání
Palo Alto, California
Místo konání akce
Virtual
Datum konání akce
2. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000681269800070