A Nonmonotone Matrix-Free Algorithm for Nonlinear Equality-Constrained Least-Squares Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351349" target="_blank" >RIV/68407700:21230/21:00351349 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/20M1349138" target="_blank" >https://doi.org/10.1137/20M1349138</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1349138" target="_blank" >10.1137/20M1349138</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Nonmonotone Matrix-Free Algorithm for Nonlinear Equality-Constrained Least-Squares Problems
Popis výsledku v původním jazyce
Least squares form one of the most prominent classes of optimization problems with numerous applications in scientific computing and data fitting. When such formulations aim at modeling complex systems, the optimization process must account for nonlinear dynamics by incorporating constraints. In addition, these systems often incorporate a large number of variables, which increases the difficulty of the problem and motivates the need for efficient algorithms amenable to large-scale implementations. In this paper, we propose and analyze a Levenberg--Marquardt algorithm for nonlinear least squares subject to nonlinear equality constraints. Our algorithm is based on inexact solves of linear least-squares problems that only require Jacobian-vector products. Global convergence is guaranteed by the combination of a composite step approach and a nonmonotone step acceptance rule. We illustrate the performance of our method on several test cases from data assimilation and inverse problems; our algorithm is able to reach the vicinity of a solution from an arbitrary starting point and can outperform the most natural alternatives for these classes of problems.
Název v anglickém jazyce
A Nonmonotone Matrix-Free Algorithm for Nonlinear Equality-Constrained Least-Squares Problems
Popis výsledku anglicky
Least squares form one of the most prominent classes of optimization problems with numerous applications in scientific computing and data fitting. When such formulations aim at modeling complex systems, the optimization process must account for nonlinear dynamics by incorporating constraints. In addition, these systems often incorporate a large number of variables, which increases the difficulty of the problem and motivates the need for efficient algorithms amenable to large-scale implementations. In this paper, we propose and analyze a Levenberg--Marquardt algorithm for nonlinear least squares subject to nonlinear equality constraints. Our algorithm is based on inexact solves of linear least-squares problems that only require Jacobian-vector products. Global convergence is guaranteed by the combination of a composite step approach and a nonmonotone step acceptance rule. We illustrate the performance of our method on several test cases from data assimilation and inverse problems; our algorithm is able to reach the vicinity of a solution from an arbitrary starting point and can outperform the most natural alternatives for these classes of problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Scientific Computing
ISSN
1064-8275
e-ISSN
1095-7197
Svazek periodika
43
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
"S743"-"S766"
Kód UT WoS článku
000712855600014
EID výsledku v databázi Scopus
—