Performance Evaluation Methodology for Long-Term Single-Object Tracking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354239" target="_blank" >RIV/68407700:21230/21:00354239 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TCYB.2020.2980618" target="_blank" >https://doi.org/10.1109/TCYB.2020.2980618</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCYB.2020.2980618" target="_blank" >10.1109/TCYB.2020.2980618</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Evaluation Methodology for Long-Term Single-Object Tracking
Popis výsledku v původním jazyce
A long-term visual object tracking performance evaluation methodology and a benchmark are proposed. Performance measures are designed by following a long-term tracking definition to maximize the analysis probing strength. The new measures outperform existing ones in interpretation potential and in better distinguishing between different tracking behaviors. We show that these measures generalize the short-term performance measures, thus linking the two tracking problems. Furthermore, the new measures are highly robust to temporal annotation sparsity and allow annotation of sequences hundreds of times longer than in the current datasets without increasing manual annotation labor. A new challenging dataset of carefully selected sequences with many target disappearances is proposed. A new tracking taxonomy is proposed to position trackers on the short-term/long-term spectrum. The benchmark contains an extensive evaluation of the largest number of long-term trackers and comparison to state-of-the-art short-term trackers. We analyze the influence of tracking architecture implementations to long-term performance and explore various redetection strategies as well as the influence of visual model update strategies to long-term tracking drift. The methodology is integrated in the VOT toolkit to automate experimental analysis and benchmarking and to facilitate the future development of long-term trackers.
Název v anglickém jazyce
Performance Evaluation Methodology for Long-Term Single-Object Tracking
Popis výsledku anglicky
A long-term visual object tracking performance evaluation methodology and a benchmark are proposed. Performance measures are designed by following a long-term tracking definition to maximize the analysis probing strength. The new measures outperform existing ones in interpretation potential and in better distinguishing between different tracking behaviors. We show that these measures generalize the short-term performance measures, thus linking the two tracking problems. Furthermore, the new measures are highly robust to temporal annotation sparsity and allow annotation of sequences hundreds of times longer than in the current datasets without increasing manual annotation labor. A new challenging dataset of carefully selected sequences with many target disappearances is proposed. A new tracking taxonomy is proposed to position trackers on the short-term/long-term spectrum. The benchmark contains an extensive evaluation of the largest number of long-term trackers and comparison to state-of-the-art short-term trackers. We analyze the influence of tracking architecture implementations to long-term performance and explore various redetection strategies as well as the influence of visual model update strategies to long-term tracking drift. The methodology is integrated in the VOT toolkit to automate experimental analysis and benchmarking and to facilitate the future development of long-term trackers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05360S" target="_blank" >GA18-05360S: Řešení inverzních problémů vznikajících při analýze rychle se pohybujících objektů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Cybernetics
ISSN
2168-2267
e-ISSN
2168-2275
Svazek periodika
51
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
6305-6318
Kód UT WoS článku
000733232400060
EID výsledku v databázi Scopus
2-s2.0-85122211177