Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fast Fourier Intrinsic Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354246" target="_blank" >RIV/68407700:21230/21:00354246 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/WACV48630.2021.00321" target="_blank" >https://doi.org/10.1109/WACV48630.2021.00321</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV48630.2021.00321" target="_blank" >10.1109/WACV48630.2021.00321</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fast Fourier Intrinsic Network

  • Popis výsledku v původním jazyce

    We address the problem of decomposing an image into albedo and shading. We propose the Fast Fourier Intrinsic Network, FFI-Net in short, that operates in the spectral domain, splitting the input into several spectral bands. Weights in FFI-Net are optimized in the spectral domain, allowing faster convergence to a lower error. FFI-Net is lightweight and does not need auxiliary networks for training. The network is trained end-to-end with a novel spectral loss which measures the global distance between the network prediction and corresponding ground truth. FFI-Net achieves state-of-the-art performance on MPI-Sintel, MIT Intrinsic, and IIW datasets.

  • Název v anglickém jazyce

    Fast Fourier Intrinsic Network

  • Popis výsledku anglicky

    We address the problem of decomposing an image into albedo and shading. We propose the Fast Fourier Intrinsic Network, FFI-Net in short, that operates in the spectral domain, splitting the input into several spectral bands. Weights in FFI-Net are optimized in the spectral domain, allowing faster convergence to a lower error. FFI-Net is lightweight and does not need auxiliary networks for training. The network is trained end-to-end with a novel spectral loss which measures the global distance between the network prediction and corresponding ground truth. FFI-Net achieves state-of-the-art performance on MPI-Sintel, MIT Intrinsic, and IIW datasets.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021

  • ISBN

    978-0-7381-4266-1

  • ISSN

    2472-6737

  • e-ISSN

    2642-9381

  • Počet stran výsledku

    10

  • Strana od-do

    3168-3177

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    USA

  • Místo konání akce

    Waikoloa, HI

  • Datum konání akce

    5. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000693397600117