Norm-attaining operators which satisfy a Bollobas type theorem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00354990" target="_blank" >RIV/68407700:21230/21:00354990 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s43037-020-00113-7" target="_blank" >https://doi.org/10.1007/s43037-020-00113-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s43037-020-00113-7" target="_blank" >10.1007/s43037-020-00113-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Norm-attaining operators which satisfy a Bollobas type theorem
Popis výsledku v původním jazyce
In this paper, we are interested in studying the set A(parallel to center dot parallel to) (X, Y) of all norm-attaining operators T from X into Y satisfying the following: given epsilon > 0, there exists eta such that if parallel to Tx parallel to > 1 - eta, then there is x(0) such that parallel to x(0) - x parallel to < epsilon and T itself attains its norm at x(0). We show that every norm one functional on c(0) which attains its norm belongs to A(parallel to center dot parallel to) (c(0), K). Also, we prove that the analogous result holds neither for A(parallel to center dot parallel to) (l(1), K) nor A(parallel to center dot parallel to) (l(infinity), K). Under some assumptions, we show that the sphere of the compact operators belongs to A(parallel to center dot parallel to) (X, Y) and that this is no longer true when some of these hypotheses are dropped. The analogous set A(nu)(X) for numerical radius of an operator instead of its norm is also defined and studied. We present a complete characterization for the diagonal operators which belong to the sets A(parallel to center dot parallel to) (X, X) and A(nu)(X) when X = c(0) or l(p). As a consequence, we get that the canonical projections P-N on these spaces belong to our sets. We give examples of operators on infinite dimensional Banach spaces which belong to A(parallel to center dot parallel to) (X, X) but not to A(nu)(X) and vice-versa. Finally, we establish some techniques which allow us to connect both sets by using direct sums.
Název v anglickém jazyce
Norm-attaining operators which satisfy a Bollobas type theorem
Popis výsledku anglicky
In this paper, we are interested in studying the set A(parallel to center dot parallel to) (X, Y) of all norm-attaining operators T from X into Y satisfying the following: given epsilon > 0, there exists eta such that if parallel to Tx parallel to > 1 - eta, then there is x(0) such that parallel to x(0) - x parallel to < epsilon and T itself attains its norm at x(0). We show that every norm one functional on c(0) which attains its norm belongs to A(parallel to center dot parallel to) (c(0), K). Also, we prove that the analogous result holds neither for A(parallel to center dot parallel to) (l(1), K) nor A(parallel to center dot parallel to) (l(infinity), K). Under some assumptions, we show that the sphere of the compact operators belongs to A(parallel to center dot parallel to) (X, Y) and that this is no longer true when some of these hypotheses are dropped. The analogous set A(nu)(X) for numerical radius of an operator instead of its norm is also defined and studied. We present a complete characterization for the diagonal operators which belong to the sets A(parallel to center dot parallel to) (X, X) and A(nu)(X) when X = c(0) or l(p). As a consequence, we get that the canonical projections P-N on these spaces belong to our sets. We give examples of operators on infinite dimensional Banach spaces which belong to A(parallel to center dot parallel to) (X, X) but not to A(nu)(X) and vice-versa. Finally, we establish some techniques which allow us to connect both sets by using direct sums.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Banach Journal of Mathematical Analysis
ISSN
2662-2033
e-ISSN
1735-8787
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
000627791600001
EID výsledku v databázi Scopus
2-s2.0-85102415681