Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum Logics that are Symmetric-difference-closed

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355080" target="_blank" >RIV/68407700:21230/21:00355080 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10773-021-04950-6" target="_blank" >https://doi.org/10.1007/s10773-021-04950-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10773-021-04950-6" target="_blank" >10.1007/s10773-021-04950-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum Logics that are Symmetric-difference-closed

  • Popis výsledku v původním jazyce

    In this note we contribute to the recently developing study of "almost Boolean" quantum logics (i.e. to the study of orthomodular partially ordered sets that are naturally endowed with a symmetric difference). We call them enriched quantum logics (EQLs). We first consider set-representable EQLs. We disprove a natural conjecture on compatibility in EQLs. Then we discuss the possibility of extending states and prove an extension result for Z(2)-states on EQLs. In the second part we pass to general orthoposets with a symmetric difference (GEQLs). We show that a simplex can be a state space of a GEQL that has an arbitrarily high degree of noncompatibility. Finally, we find an appropriate definition of a "parametrization" as a mapping between GEQLs that preserves the set-representation.

  • Název v anglickém jazyce

    Quantum Logics that are Symmetric-difference-closed

  • Popis výsledku anglicky

    In this note we contribute to the recently developing study of "almost Boolean" quantum logics (i.e. to the study of orthomodular partially ordered sets that are naturally endowed with a symmetric difference). We call them enriched quantum logics (EQLs). We first consider set-representable EQLs. We disprove a natural conjecture on compatibility in EQLs. Then we discuss the possibility of extending states and prove an extension result for Z(2)-states on EQLs. In the second part we pass to general orthoposets with a symmetric difference (GEQLs). We show that a simplex can be a state space of a GEQL that has an arbitrarily high degree of noncompatibility. Finally, we find an appropriate definition of a "parametrization" as a mapping between GEQLs that preserves the set-representation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Theoretical Physics

  • ISSN

    0020-7748

  • e-ISSN

    1572-9575

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    3919-3926

  • Kód UT WoS článku

    000696798200001

  • EID výsledku v databázi Scopus

    2-s2.0-85115062436