Coarse and Lipschitz universality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355103" target="_blank" >RIV/68407700:21230/21:00355103 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4064/fm956-9-2020" target="_blank" >https://doi.org/10.4064/fm956-9-2020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm956-9-2020" target="_blank" >10.4064/fm956-9-2020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coarse and Lipschitz universality
Popis výsledku v původním jazyce
We provide several metric universality results. For certain classes C of metric spaces we exhibit families of metric spaces (M-i, d(i))i is an element of I which have the property that a metric space (X, d(X)) in C is coarsely, resp. Lipschitzly, universal for all spaces in C if (M-i, d(i))i is an element of I equi-coarsely, respectively equi-Lipschitzly, embeds into (X, d(X)). Such families are built as certain Schreier-type metric subsets of c(0). We deduce a metric analogue of Bourgain's theorem, which generalized Szlenk's theorem, and prove that a space which is coarsely universal for all separable reflexive asymptotic-c(0) Banach spaces is coarsely universal for all separable metric spaces. One of our coarse universality results is valid under Martin's Axiom and the negation of the Continuum Hypothesis. We discuss the strength of the universality statements that can be obtained without these additional set-theoretic assumptions. In the second part of the paper, we study universality properties of Kalton's interlacing graphs. In particular, we prove that every finite metric space embeds almost isometrically into some interlacing graph of large enough diameter.
Název v anglickém jazyce
Coarse and Lipschitz universality
Popis výsledku anglicky
We provide several metric universality results. For certain classes C of metric spaces we exhibit families of metric spaces (M-i, d(i))i is an element of I which have the property that a metric space (X, d(X)) in C is coarsely, resp. Lipschitzly, universal for all spaces in C if (M-i, d(i))i is an element of I equi-coarsely, respectively equi-Lipschitzly, embeds into (X, d(X)). Such families are built as certain Schreier-type metric subsets of c(0). We deduce a metric analogue of Bourgain's theorem, which generalized Szlenk's theorem, and prove that a space which is coarsely universal for all separable reflexive asymptotic-c(0) Banach spaces is coarsely universal for all separable metric spaces. One of our coarse universality results is valid under Martin's Axiom and the negation of the Continuum Hypothesis. We discuss the strength of the universality statements that can be obtained without these additional set-theoretic assumptions. In the second part of the paper, we study universality properties of Kalton's interlacing graphs. In particular, we prove that every finite metric space embeds almost isometrically into some interlacing graph of large enough diameter.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
1730-6329
Svazek periodika
254
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
34
Strana od-do
181-214
Kód UT WoS článku
000637944900004
EID výsledku v databázi Scopus
2-s2.0-85108281593