Semi-algebraic Approximation Using Christoffel-Darboux Kernel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355846" target="_blank" >RIV/68407700:21230/21:00355846 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00365-021-09535-4" target="_blank" >https://doi.org/10.1007/s00365-021-09535-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00365-021-09535-4" target="_blank" >10.1007/s00365-021-09535-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-algebraic Approximation Using Christoffel-Darboux Kernel
Popis výsledku v původním jazyce
We provide a new method to approximate a (possibly discontinuous) function using Christoffel-Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.
Název v anglickém jazyce
Semi-algebraic Approximation Using Christoffel-Darboux Kernel
Popis výsledku anglicky
We provide a new method to approximate a (possibly discontinuous) function using Christoffel-Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely many moments of the Young measure supported on the graph of the function. Such an input is available when approximating weak (or measure-valued) solution of optimal control problems, entropy solutions to nonlinear hyperbolic PDEs, or using numerical integration from finitely many evaluations of the function. While most of the existing methods construct a piecewise polynomial approximation, we construct a semi-algebraic approximation whose estimation and evaluation can be performed efficiently. An appealing feature of this method is that it deals with nonsmoothness implicitly so that a single scheme can be used to treat smooth or nonsmooth functions without any prior knowledge. On the theoretical side, we prove pointwise convergence almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions. Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our approach on various examples from control and approximation. In particular, we observe empirically that our method does not suffer from the Gibbs phenomenon when approximating discontinuous functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Constructive Approximation
ISSN
0176-4276
e-ISSN
1432-0940
Svazek periodika
54
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
39
Strana od-do
391-429
Kód UT WoS článku
000637686900002
EID výsledku v databázi Scopus
2-s2.0-85103906540