Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Stochastic Levenberg--Marquardt Method Using Random Models with Complexity Results

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00357703" target="_blank" >RIV/68407700:21230/22:00357703 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1137/20M1366253" target="_blank" >https://doi.org/10.1137/20M1366253</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1366253" target="_blank" >10.1137/20M1366253</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Stochastic Levenberg--Marquardt Method Using Random Models with Complexity Results

  • Popis výsledku v původním jazyce

    Globally convergent variants of the Gauss--Newton algorithm are often the methods of choice to tackle nonlinear least-squares problems. Among such frameworks, Levenberg--Marquardt and trust-region methods are two well-established, similar paradigms. Both schemes have been studied when the Gauss--Newton model is replaced by a random model that is only accurate with a given probability. Trust-region schemes have also been applied to problems where the objective value is subject to noise: this setting is of particular interest in fields such as data assimilation, where efficient methods that can adapt to noise are needed to account for the intrinsic uncertainty in the input data. In this paper, we describe a stochastic Levenberg--Marquardt algorithm that handles noisy objective function values and random models, provided sufficient accuracy is achieved in probability. Our method relies on a specific scaling of the regularization parameter that allows us to leverage existing results for trust-region algorithms. Moreover, we exploit the structure of our objective through the use of a family of stationarity criteria tailored to least-squares problems. Provided the probability of accurate function estimates and models is sufficiently large, we bound the expected number of iterations needed to reach an approximate stationary point, which generalizes results based on using deterministic models or noiseless function values. We illustrate the link between our approach and several applications related to inverse problems and machine learning.

  • Název v anglickém jazyce

    A Stochastic Levenberg--Marquardt Method Using Random Models with Complexity Results

  • Popis výsledku anglicky

    Globally convergent variants of the Gauss--Newton algorithm are often the methods of choice to tackle nonlinear least-squares problems. Among such frameworks, Levenberg--Marquardt and trust-region methods are two well-established, similar paradigms. Both schemes have been studied when the Gauss--Newton model is replaced by a random model that is only accurate with a given probability. Trust-region schemes have also been applied to problems where the objective value is subject to noise: this setting is of particular interest in fields such as data assimilation, where efficient methods that can adapt to noise are needed to account for the intrinsic uncertainty in the input data. In this paper, we describe a stochastic Levenberg--Marquardt algorithm that handles noisy objective function values and random models, provided sufficient accuracy is achieved in probability. Our method relies on a specific scaling of the regularization parameter that allows us to leverage existing results for trust-region algorithms. Moreover, we exploit the structure of our objective through the use of a family of stationarity criteria tailored to least-squares problems. Provided the probability of accurate function estimates and models is sufficiently large, we bound the expected number of iterations needed to reach an approximate stationary point, which generalizes results based on using deterministic models or noiseless function values. We illustrate the link between our approach and several applications related to inverse problems and machine learning.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM/ASA Journal on Uncertainty Quantification

  • ISSN

    2166-2525

  • e-ISSN

    2166-2525

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    507-536

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85125866895