Exploiting Sparsity for Semi-Algebraic Set Volume Computation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00357943" target="_blank" >RIV/68407700:21230/22:00357943 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10208-021-09508-w" target="_blank" >https://doi.org/10.1007/s10208-021-09508-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10208-021-09508-w" target="_blank" >10.1007/s10208-021-09508-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting Sparsity for Semi-Algebraic Set Volume Computation
Popis výsledku v původním jazyce
We provide a systematic deterministic numerical scheme to approximate the volume (i.e., the Lebesgue measure) of a basic semi-algebraic set whose description follows a correlative sparsity pattern. As in previous works (without sparsity), the underlying strategy is to consider an infinite-dimensional linear program on measures whose optimal value is the volume of the set. This is a particular instance of a generalized moment problem which in turn can be approximated as closely as desired by solving a hierarchy of semidefinite relaxations of increasing size. The novelty with respect to previous work is that by exploiting the sparsity pattern we can provide a sparse formulation for which the associated semidefinite relaxations are of much smaller size. In addition, we can decompose the sparse relaxations into completely decoupled subproblems of smaller size, and in some cases computations can be done in parallel. To the best of our knowledge, it is the first contribution that exploits correlative sparsity for volume computation of semi-algebraic sets which are possibly high-dimensional and/or non-convex and/or non-connected.
Název v anglickém jazyce
Exploiting Sparsity for Semi-Algebraic Set Volume Computation
Popis výsledku anglicky
We provide a systematic deterministic numerical scheme to approximate the volume (i.e., the Lebesgue measure) of a basic semi-algebraic set whose description follows a correlative sparsity pattern. As in previous works (without sparsity), the underlying strategy is to consider an infinite-dimensional linear program on measures whose optimal value is the volume of the set. This is a particular instance of a generalized moment problem which in turn can be approximated as closely as desired by solving a hierarchy of semidefinite relaxations of increasing size. The novelty with respect to previous work is that by exploiting the sparsity pattern we can provide a sparse formulation for which the associated semidefinite relaxations are of much smaller size. In addition, we can decompose the sparse relaxations into completely decoupled subproblems of smaller size, and in some cases computations can be done in parallel. To the best of our knowledge, it is the first contribution that exploits correlative sparsity for volume computation of semi-algebraic sets which are possibly high-dimensional and/or non-convex and/or non-connected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foundations of Computational Mathematics
ISSN
1615-3375
e-ISSN
1615-3383
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
49
Strana od-do
161-209
Kód UT WoS článku
000633264700002
EID výsledku v databázi Scopus
2-s2.0-85103350064