Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00358262" target="_blank" >RIV/68407700:21230/22:00358262 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.48550/arXiv.2111.02278" target="_blank" >https://doi.org/10.48550/arXiv.2111.02278</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2111.02278" target="_blank" >10.48550/arXiv.2111.02278</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Popis výsledku v původním jazyce
Understanding the properties of neural networks trained via stochastic gradient descent (SGD) is at the heart of the theory of deep learning. In this work, we take a mean- field view, and consider a two-layer ReLU network trained via noisy-SGD for a univariate regularized regression problem. Our main result is that SGD with vanishingly small noise injected in the gradients is biased towards a simple solution: at convergence, the ReLU network implements a piecewise linear map of the inputs, and the number of knot"points { i.e., points where the tangent of the ReLU network estimator changes { between two consecutive training inputs is at most three. In particular, as the number of neurons of the network grows, the SGD dynamics is captured by the solution of a gradient ow and, at convergence, the distribution of the weights approaches the unique minimizer of a related free energy, which has a Gibbs form. Our key technical contribution consists in the analysis of the estimator resulting from this minimizer: we show that its second derivative vanishes everywhere, except at some specific locations which represent the knot"points. We also provide empirical evidence that knots at locations distinct from the data points might occur, as predicted by our theory.
Název v anglickém jazyce
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Popis výsledku anglicky
Understanding the properties of neural networks trained via stochastic gradient descent (SGD) is at the heart of the theory of deep learning. In this work, we take a mean- field view, and consider a two-layer ReLU network trained via noisy-SGD for a univariate regularized regression problem. Our main result is that SGD with vanishingly small noise injected in the gradients is biased towards a simple solution: at convergence, the ReLU network implements a piecewise linear map of the inputs, and the number of knot"points { i.e., points where the tangent of the ReLU network estimator changes { between two consecutive training inputs is at most three. In particular, as the number of neurons of the network grows, the SGD dynamics is captured by the solution of a gradient ow and, at convergence, the distribution of the weights approaches the unique minimizer of a related free energy, which has a Gibbs form. Our key technical contribution consists in the analysis of the estimator resulting from this minimizer: we show that its second derivative vanishes everywhere, except at some specific locations which represent the knot"points. We also provide empirical evidence that knots at locations distinct from the data points might occur, as predicted by our theory.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Machine Learning Research
ISSN
1532-4435
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
130
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
55
Strana od-do
1-55
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85130359653