Mean-field Analysis for Heavy Ball Methods: Dropout-stability, Connectivity, and Global Convergence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00375312" target="_blank" >RIV/68407700:21230/23:00375312 - isvavai.cz</a>
Výsledek na webu
<a href="https://openreview.net/pdf?id=gZna3IiGfl" target="_blank" >https://openreview.net/pdf?id=gZna3IiGfl</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mean-field Analysis for Heavy Ball Methods: Dropout-stability, Connectivity, and Global Convergence
Popis výsledku v původním jazyce
The stochastic heavy ball method (SHB), also known as stochastic gradient descent (SGD) with Polyak's momentum, is widely used in training neural networks. However, despite the remarkable success of such algorithm in practice, its theoretical characterization remains limited. In this paper, we focus on neural networks with two and three layers and provide a rigorous understanding of the properties of the solutions found by SHB: emph{(i)} stability after dropping out part of the neurons, emph{(ii)} connectivity along a low-loss path, and emph{(iii)} convergence to the global optimum. To achieve this goal, we take a mean-field view and relate the SHB dynamics to a certain partial differential equation in the limit of large network widths. This mean-field perspective has inspired a recent line of work focusing on SGD while, in contrast, our paper considers an algorithm with momentum. More specifically, after proving existence and uniqueness of the limit differential equations, we show convergence to the global optimum and give a quantitative bound between the mean-field limit and the SHB dynamics of a finite-width network. Armed with this last bound, we are able to establish the dropout-stability and connectivity of SHB solutions.
Název v anglickém jazyce
Mean-field Analysis for Heavy Ball Methods: Dropout-stability, Connectivity, and Global Convergence
Popis výsledku anglicky
The stochastic heavy ball method (SHB), also known as stochastic gradient descent (SGD) with Polyak's momentum, is widely used in training neural networks. However, despite the remarkable success of such algorithm in practice, its theoretical characterization remains limited. In this paper, we focus on neural networks with two and three layers and provide a rigorous understanding of the properties of the solutions found by SHB: emph{(i)} stability after dropping out part of the neurons, emph{(ii)} connectivity along a low-loss path, and emph{(iii)} convergence to the global optimum. To achieve this goal, we take a mean-field view and relate the SHB dynamics to a certain partial differential equation in the limit of large network widths. This mean-field perspective has inspired a recent line of work focusing on SGD while, in contrast, our paper considers an algorithm with momentum. More specifically, after proving existence and uniqueness of the limit differential equations, we show convergence to the global optimum and give a quantitative bound between the mean-field limit and the SHB dynamics of a finite-width network. Armed with this last bound, we are able to establish the dropout-stability and connectivity of SHB solutions.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions on Machine Learning Research
ISSN
2835-8856
e-ISSN
2835-8856
Svazek periodika
—
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
49
Strana od-do
1-49
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-105000206429