Dynamic Pricing for Charging of EVs with Monte Carlo Tree Search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359745" target="_blank" >RIV/68407700:21230/22:00359745 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/smartcities5010014" target="_blank" >https://doi.org/10.3390/smartcities5010014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/smartcities5010014" target="_blank" >10.3390/smartcities5010014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Pricing for Charging of EVs with Monte Carlo Tree Search
Popis výsledku v původním jazyce
As electric vehicles (EVs) are slowly becoming a common occurrence on roads, commercial EV charging is becoming a standard commercial service. With this development, charging station operators are looking for ways to make their charging services more profitable or allocate the available resources optimally. Dynamic pricing is a proven technique to increase revenue in markets with heterogeneous demand. This paper proposes a Markov Decision Process (MDP)-based approach to revenue- or utilization- maximizing dynamic pricing for charging station operators. We implement the method using a Monte Carlo Tree Search (MCTS) algorithm and evaluate it in simulation using a range of problem instances based on a real-world dataset of EV charging sessions. We show that our approach provides near-optimal pricing decisions in milliseconds for large-scale problems, significantly increasing revenue or utilization over the flat-rate baseline under a range of parameters.
Název v anglickém jazyce
Dynamic Pricing for Charging of EVs with Monte Carlo Tree Search
Popis výsledku anglicky
As electric vehicles (EVs) are slowly becoming a common occurrence on roads, commercial EV charging is becoming a standard commercial service. With this development, charging station operators are looking for ways to make their charging services more profitable or allocate the available resources optimally. Dynamic pricing is a proven technique to increase revenue in markets with heterogeneous demand. This paper proposes a Markov Decision Process (MDP)-based approach to revenue- or utilization- maximizing dynamic pricing for charging station operators. We implement the method using a Monte Carlo Tree Search (MCTS) algorithm and evaluate it in simulation using a range of problem instances based on a real-world dataset of EV charging sessions. We show that our approach provides near-optimal pricing decisions in milliseconds for large-scale problems, significantly increasing revenue or utilization over the flat-rate baseline under a range of parameters.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Smart Cities
ISSN
2624-6511
e-ISSN
2624-6511
Svazek periodika
5
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
223-240
Kód UT WoS článku
000774270600001
EID výsledku v databázi Scopus
2-s2.0-85125908894