Revenue Maximization for Electric Vehicle Charging Service Providers Using Sequential Dynamic Pricing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322134" target="_blank" >RIV/68407700:21230/18:00322134 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?id=3237506" target="_blank" >https://dl.acm.org/citation.cfm?id=3237506</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revenue Maximization for Electric Vehicle Charging Service Providers Using Sequential Dynamic Pricing
Popis výsledku v původním jazyce
With the increasing prevalence of electric vehicles (EVs), the provision of EV charging is becoming a standard commercial service. With this shift, EV charging service providers are looking for ways to make their business more profitable. Dynamic pricing is a proven technique to increase revenue in markets with time-variant, heterogeneous demand. In this paper, we propose a Markov Decision Process (MDP)-based approach to revenue-maximizing dynamic pricing for charging service providers. We implement the approach using an ensemble of policy iteration MDP solvers and evaluate it using a simulation based on real-world data. We show that our proposed method achieves significantly higher revenue than methods utilizing flat-based pricing. In addition to achieving higher revenue for charging service providers, the method also increases the efficiency of allocation measured in terms of the total utilization of the charging station.
Název v anglickém jazyce
Revenue Maximization for Electric Vehicle Charging Service Providers Using Sequential Dynamic Pricing
Popis výsledku anglicky
With the increasing prevalence of electric vehicles (EVs), the provision of EV charging is becoming a standard commercial service. With this shift, EV charging service providers are looking for ways to make their business more profitable. Dynamic pricing is a proven technique to increase revenue in markets with time-variant, heterogeneous demand. In this paper, we propose a Markov Decision Process (MDP)-based approach to revenue-maximizing dynamic pricing for charging service providers. We implement the approach using an ensemble of policy iteration MDP solvers and evaluate it using a simulation based on real-world data. We show that our proposed method achieves significantly higher revenue than methods utilizing flat-based pricing. In addition to achieving higher revenue for charging service providers, the method also increases the efficiency of allocation measured in terms of the total utilization of the charging station.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems
ISBN
978-1-5108-6808-3
ISSN
1548-8403
e-ISSN
—
Počet stran výsledku
9
Strana od-do
832-840
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Stockholm
Datum konání akce
10. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—