Competing for Resources: Estimating Adversary Strategy for Effective Plan Generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360160" target="_blank" >RIV/68407700:21230/22:00360160 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00360160
Výsledek na webu
<a href="https://doi.org/10.1609/aaai.v36i9.21205" target="_blank" >https://doi.org/10.1609/aaai.v36i9.21205</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v36i9.21205" target="_blank" >10.1609/aaai.v36i9.21205</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Competing for Resources: Estimating Adversary Strategy for Effective Plan Generation
Popis výsledku v původním jazyce
Effective decision making while competing for limited resources in adversarial environments is important for many real-world applications (e.g. two Taxi companies competing for customers). Decision-making techniques such as Automated planning have to take into account possible actions of adversary (or competing) agents. That said, the agent should know what the competitor will likely do and then generate its plan accordingly. In this paper we propose a novel approach for estimating strategies of the adversary (or the competitor), sampling its actions that might hinder agent's goals by interfering with the agent's actions. The estimated competitor strategies are used in plan generation such that agent's actions have to be applied prior to the ones of the competitor, whose estimated times dictate the deadlines. We empirically evaluate our approach leveraging sampling of competitor's actions by comparing it to the naive approach optimizing the make-span (not taking the competing agent into account at all) and to Nash Equilibrium (mixed) strategies.
Název v anglickém jazyce
Competing for Resources: Estimating Adversary Strategy for Effective Plan Generation
Popis výsledku anglicky
Effective decision making while competing for limited resources in adversarial environments is important for many real-world applications (e.g. two Taxi companies competing for customers). Decision-making techniques such as Automated planning have to take into account possible actions of adversary (or competing) agents. That said, the agent should know what the competitor will likely do and then generate its plan accordingly. In this paper we propose a novel approach for estimating strategies of the adversary (or the competitor), sampling its actions that might hinder agent's goals by interfering with the agent's actions. The estimated competitor strategies are used in plan generation such that agent's actions have to be applied prior to the ones of the competitor, whose estimated times dictate the deadlines. We empirically evaluate our approach leveraging sampling of competitor's actions by comparing it to the naive approach optimizing the make-span (not taking the competing agent into account at all) and to Nash Equilibrium (mixed) strategies.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 36th AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-876-3
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
9
Strana od-do
9707-9715
Název nakladatele
AAAI Press
Místo vydání
Menlo Park
Místo konání akce
- virtual
Datum konání akce
22. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000893639102081