Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quality Analysis of Multi-Agent Multi-Item Pickup and Delivery Solutions Using a Decoupled Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00364289" target="_blank" >RIV/68407700:21230/22:00364289 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/22:00364289

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ifacol.2023.01.134" target="_blank" >https://doi.org/10.1016/j.ifacol.2023.01.134</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2023.01.134" target="_blank" >10.1016/j.ifacol.2023.01.134</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quality Analysis of Multi-Agent Multi-Item Pickup and Delivery Solutions Using a Decoupled Approach

  • Popis výsledku v původním jazyce

    In this article, we study the Multi-agent Multi-item Pickup and Delivery (MAMPD), which stands for a problem of finding collision-free trajectories for a fleet of mobile agents transporting a set of items from their initial positions to the specified goal locations. Each agent can carry multiple items up to a given capacity at the same moment. This requires solving two orthogonal problems concurrently: assigning a sequence of items to pick for every agent and finding a set of collision-free trajectories under this assignment. We decouple the problem into two subproblems: the task assignment (TA) and Multi-Agent Pathfinding (MAPF), to determine the lower and upper bounds of the MAMPD. First, a lower bound is estimated by formulating and solving the TA as a Vehicle Routing Problem (VRP). The collisions, which are not considered during the TA, are consequently resolved using a MAPF solver on the VRP solution. The cost of the MAPF solution forms an upper bound of the MAMPD. We show that on a large class of setups, the gap between the lower and upper bounds is small. This signifies that the decoupled MAMPD solver obtained near-optimal solutions. However, we show that on certain setups, intentionally designed to be difficult, the decoupled solver is unable to find a solution with a small gap even when using a bounded suboptimal MAPF solver. By computing the gap, we can determine whether the solution obtained by the decoupled approach is near-optimal or whether it is beneficial to use a more advanced MAMPD solver. Copyright (c) 2022 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

  • Název v anglickém jazyce

    Quality Analysis of Multi-Agent Multi-Item Pickup and Delivery Solutions Using a Decoupled Approach

  • Popis výsledku anglicky

    In this article, we study the Multi-agent Multi-item Pickup and Delivery (MAMPD), which stands for a problem of finding collision-free trajectories for a fleet of mobile agents transporting a set of items from their initial positions to the specified goal locations. Each agent can carry multiple items up to a given capacity at the same moment. This requires solving two orthogonal problems concurrently: assigning a sequence of items to pick for every agent and finding a set of collision-free trajectories under this assignment. We decouple the problem into two subproblems: the task assignment (TA) and Multi-Agent Pathfinding (MAPF), to determine the lower and upper bounds of the MAMPD. First, a lower bound is estimated by formulating and solving the TA as a Vehicle Routing Problem (VRP). The collisions, which are not considered during the TA, are consequently resolved using a MAPF solver on the VRP solution. The cost of the MAPF solution forms an upper bound of the MAMPD. We show that on a large class of setups, the gap between the lower and upper bounds is small. This signifies that the decoupled MAMPD solver obtained near-optimal solutions. However, we show that on certain setups, intentionally designed to be difficult, the decoupled solver is unable to find a solution with a small gap even when using a bounded suboptimal MAPF solver. By computing the gap, we can determine whether the solution obtained by the decoupled approach is near-optimal or whether it is beneficial to use a more advanced MAMPD solver. Copyright (c) 2022 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IFAC-PapersOnLine 13th IFAC Symposium on Robot Control SYROCO 2022

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

    2405-8963

  • Počet stran výsledku

    6

  • Strana od-do

    61-66

  • Název nakladatele

    Elsevier BV

  • Místo vydání

    Linz

  • Místo konání akce

    Matsumoto

  • Datum konání akce

    17. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000925715900010