Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Value functions for depth-limited solving in zero-sum imperfect-information games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364334" target="_blank" >RIV/68407700:21230/23:00364334 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.artint.2022.103805" target="_blank" >https://doi.org/10.1016/j.artint.2022.103805</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.artint.2022.103805" target="_blank" >10.1016/j.artint.2022.103805</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Value functions for depth-limited solving in zero-sum imperfect-information games

  • Popis výsledku v původním jazyce

    We provide a formal definition of depth-limited games together with an accessible and rigorous explanation of the underlying concepts, both of which were previously missing in imperfect-information games. The definition works for an arbitrary (perfect recall) extensive-form game and is not tied to any specific game-solving algorithm. Moreover, this framework unifies and significantly extends three approaches to depth-limited solving that previously existed in extensive-form games and multiagent reinforcement learning but were not known to be compatible. A key ingredient of these depth-limited games is value functions. Focusing on two-player zero-sum imperfect-information games, we show how to obtain optimal value functions and prove that public information provides both necessary and sufficient context for computing them. We provide a domain-independent encoding of the domains that allows for approximating value functions even by simple feed-forward neural networks, which are then able to generalize to unseen parts of the game. We use the resulting value network to implement a depth-limited version of counterfactual regret minimization. In three distinct domains, we show that the algorithm's exploitability is roughly linearly dependent on the value network's quality and that it is not difficult to train a value network with which depth-limited CFR's performance is as good as that of CFR with access to the full game.

  • Název v anglickém jazyce

    Value functions for depth-limited solving in zero-sum imperfect-information games

  • Popis výsledku anglicky

    We provide a formal definition of depth-limited games together with an accessible and rigorous explanation of the underlying concepts, both of which were previously missing in imperfect-information games. The definition works for an arbitrary (perfect recall) extensive-form game and is not tied to any specific game-solving algorithm. Moreover, this framework unifies and significantly extends three approaches to depth-limited solving that previously existed in extensive-form games and multiagent reinforcement learning but were not known to be compatible. A key ingredient of these depth-limited games is value functions. Focusing on two-player zero-sum imperfect-information games, we show how to obtain optimal value functions and prove that public information provides both necessary and sufficient context for computing them. We provide a domain-independent encoding of the domains that allows for approximating value functions even by simple feed-forward neural networks, which are then able to generalize to unseen parts of the game. We use the resulting value network to implement a depth-limited version of counterfactual regret minimization. In three distinct domains, we show that the algorithm's exploitability is roughly linearly dependent on the value network's quality and that it is not difficult to train a value network with which depth-limited CFR's performance is as good as that of CFR with access to the full game.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial Intelligence

  • ISSN

    0004-3702

  • e-ISSN

    1872-7921

  • Svazek periodika

    314

  • Číslo periodika v rámci svazku

    103805

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    51

  • Strana od-do

  • Kód UT WoS článku

    000886552700002

  • EID výsledku v databázi Scopus

    2-s2.0-85140295902