Value functions for depth-limited solving in zero-sum imperfect-information games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364334" target="_blank" >RIV/68407700:21230/23:00364334 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.artint.2022.103805" target="_blank" >https://doi.org/10.1016/j.artint.2022.103805</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artint.2022.103805" target="_blank" >10.1016/j.artint.2022.103805</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Value functions for depth-limited solving in zero-sum imperfect-information games
Popis výsledku v původním jazyce
We provide a formal definition of depth-limited games together with an accessible and rigorous explanation of the underlying concepts, both of which were previously missing in imperfect-information games. The definition works for an arbitrary (perfect recall) extensive-form game and is not tied to any specific game-solving algorithm. Moreover, this framework unifies and significantly extends three approaches to depth-limited solving that previously existed in extensive-form games and multiagent reinforcement learning but were not known to be compatible. A key ingredient of these depth-limited games is value functions. Focusing on two-player zero-sum imperfect-information games, we show how to obtain optimal value functions and prove that public information provides both necessary and sufficient context for computing them. We provide a domain-independent encoding of the domains that allows for approximating value functions even by simple feed-forward neural networks, which are then able to generalize to unseen parts of the game. We use the resulting value network to implement a depth-limited version of counterfactual regret minimization. In three distinct domains, we show that the algorithm's exploitability is roughly linearly dependent on the value network's quality and that it is not difficult to train a value network with which depth-limited CFR's performance is as good as that of CFR with access to the full game.
Název v anglickém jazyce
Value functions for depth-limited solving in zero-sum imperfect-information games
Popis výsledku anglicky
We provide a formal definition of depth-limited games together with an accessible and rigorous explanation of the underlying concepts, both of which were previously missing in imperfect-information games. The definition works for an arbitrary (perfect recall) extensive-form game and is not tied to any specific game-solving algorithm. Moreover, this framework unifies and significantly extends three approaches to depth-limited solving that previously existed in extensive-form games and multiagent reinforcement learning but were not known to be compatible. A key ingredient of these depth-limited games is value functions. Focusing on two-player zero-sum imperfect-information games, we show how to obtain optimal value functions and prove that public information provides both necessary and sufficient context for computing them. We provide a domain-independent encoding of the domains that allows for approximating value functions even by simple feed-forward neural networks, which are then able to generalize to unseen parts of the game. We use the resulting value network to implement a depth-limited version of counterfactual regret minimization. In three distinct domains, we show that the algorithm's exploitability is roughly linearly dependent on the value network's quality and that it is not difficult to train a value network with which depth-limited CFR's performance is as good as that of CFR with access to the full game.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence
ISSN
0004-3702
e-ISSN
1872-7921
Svazek periodika
314
Číslo periodika v rámci svazku
103805
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
51
Strana od-do
—
Kód UT WoS článku
000886552700002
EID výsledku v databázi Scopus
2-s2.0-85140295902