Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Look-ahead Search on Top of Policy Networks in Imperfect Information Games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377053" target="_blank" >RIV/68407700:21230/24:00377053 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.24963/ijcai.2024/480" target="_blank" >https://doi.org/10.24963/ijcai.2024/480</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24963/ijcai.2024/480" target="_blank" >10.24963/ijcai.2024/480</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Look-ahead Search on Top of Policy Networks in Imperfect Information Games

  • Popis výsledku v původním jazyce

    Search in test time is often used to improve the performance of reinforcement learning algorithms. Performing theoretically sound search in fully adversarial two-player games with imperfect information is notoriously difficult and requires a complicated training process. We present a method for adding test-time search to an arbitrary policy-gradient algorithm that learns from sampled trajectories. Besides the policy network, the algorithm trains an additional critic network, which estimates the expected values of players following various transformations of the policies given by the policy network. These values are then used for depth-limited search. We show how the values from this critic can create a value function for imperfect information games. Moreover, they can be used to compute the summary statistics necessary to start the search from an arbitrary decision point in the game. The presented algorithm is scalable to very large games since it does not require any search during train time. We evaluate the algorithm's performance when trained along Regularized Nash Dynamics, and we evaluate the benefit of using the search in the standard benchmark game of Leduc hold'em, multiple variants of imperfect information Goofspiel, and Battleships.

  • Název v anglickém jazyce

    Look-ahead Search on Top of Policy Networks in Imperfect Information Games

  • Popis výsledku anglicky

    Search in test time is often used to improve the performance of reinforcement learning algorithms. Performing theoretically sound search in fully adversarial two-player games with imperfect information is notoriously difficult and requires a complicated training process. We present a method for adding test-time search to an arbitrary policy-gradient algorithm that learns from sampled trajectories. Besides the policy network, the algorithm trains an additional critic network, which estimates the expected values of players following various transformations of the policies given by the policy network. These values are then used for depth-limited search. We show how the values from this critic can create a value function for imperfect information games. Moreover, they can be used to compute the summary statistics necessary to start the search from an arbitrary decision point in the game. The presented algorithm is scalable to very large games since it does not require any search during train time. We evaluate the algorithm's performance when trained along Regularized Nash Dynamics, and we evaluate the benefit of using the search in the standard benchmark game of Leduc hold'em, multiple variants of imperfect information Goofspiel, and Battleships.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 33rd International Joint Conference on Artificial Intelligence

  • ISBN

    978-1-956792-04-1

  • ISSN

    1045-0823

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    4344-4352

  • Název nakladatele

    International Joint Conferences on Artificial Intelligence Organization

  • Místo vydání

  • Místo konání akce

    Jeju

  • Datum konání akce

    3. 8. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001347142804052