Look-ahead Search on Top of Policy Networks in Imperfect Information Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377053" target="_blank" >RIV/68407700:21230/24:00377053 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/ijcai.2024/480" target="_blank" >https://doi.org/10.24963/ijcai.2024/480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2024/480" target="_blank" >10.24963/ijcai.2024/480</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Look-ahead Search on Top of Policy Networks in Imperfect Information Games
Popis výsledku v původním jazyce
Search in test time is often used to improve the performance of reinforcement learning algorithms. Performing theoretically sound search in fully adversarial two-player games with imperfect information is notoriously difficult and requires a complicated training process. We present a method for adding test-time search to an arbitrary policy-gradient algorithm that learns from sampled trajectories. Besides the policy network, the algorithm trains an additional critic network, which estimates the expected values of players following various transformations of the policies given by the policy network. These values are then used for depth-limited search. We show how the values from this critic can create a value function for imperfect information games. Moreover, they can be used to compute the summary statistics necessary to start the search from an arbitrary decision point in the game. The presented algorithm is scalable to very large games since it does not require any search during train time. We evaluate the algorithm's performance when trained along Regularized Nash Dynamics, and we evaluate the benefit of using the search in the standard benchmark game of Leduc hold'em, multiple variants of imperfect information Goofspiel, and Battleships.
Název v anglickém jazyce
Look-ahead Search on Top of Policy Networks in Imperfect Information Games
Popis výsledku anglicky
Search in test time is often used to improve the performance of reinforcement learning algorithms. Performing theoretically sound search in fully adversarial two-player games with imperfect information is notoriously difficult and requires a complicated training process. We present a method for adding test-time search to an arbitrary policy-gradient algorithm that learns from sampled trajectories. Besides the policy network, the algorithm trains an additional critic network, which estimates the expected values of players following various transformations of the policies given by the policy network. These values are then used for depth-limited search. We show how the values from this critic can create a value function for imperfect information games. Moreover, they can be used to compute the summary statistics necessary to start the search from an arbitrary decision point in the game. The presented algorithm is scalable to very large games since it does not require any search during train time. We evaluate the algorithm's performance when trained along Regularized Nash Dynamics, and we evaluate the benefit of using the search in the standard benchmark game of Leduc hold'em, multiple variants of imperfect information Goofspiel, and Battleships.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 33rd International Joint Conference on Artificial Intelligence
ISBN
978-1-956792-04-1
ISSN
1045-0823
e-ISSN
—
Počet stran výsledku
9
Strana od-do
4344-4352
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Jeju
Datum konání akce
3. 8. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001347142804052