Automated Identification of Stereoelectroencephalography Contacts and Measurement of Factors Influencing Accuracy of Frame Stereotaxy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00366141" target="_blank" >RIV/68407700:21230/23:00366141 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064203:_____/23:10464802 RIV/00216208:11130/23:10464802
Výsledek na webu
<a href="https://doi.org/10.1109/JBHI.2023.3271857" target="_blank" >https://doi.org/10.1109/JBHI.2023.3271857</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JBHI.2023.3271857" target="_blank" >10.1109/JBHI.2023.3271857</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Identification of Stereoelectroencephalography Contacts and Measurement of Factors Influencing Accuracy of Frame Stereotaxy
Popis výsledku v původním jazyce
Objective: Stereoelectroencephalography (SEEG) is an established invasive diagnostic technique for use in patients with drug-resistant focal epilepsy evaluated before resective epilepsy surgery. The factors that influence the accuracy of electrode implantation are not fully understood. Adequate accuracy prevents the risk of major surgery complications. Precise knowledge of the anatomical positions of individual electrode contacts is crucial for the interpretation of SEEG recordings and subsequent surgery. Methods: We developed an image processing pipeline to localize implanted electrodes and detect individual contact positions using computed tomography (CT), as a substitute for time-consuming manual labeling. The algorithm automates measurement of parameters of the electrodes implanted in the skull (bone thickness, implantation angle and depth) for use in modeling of predictive factors that influence implantation accuracy. Results: Fifty-four patients evaluated by SEEG were analyzed. A total of 662 SEEG electrodes with 8,745 contacts were stereotactically inserted. The automated detector localized all contacts with better accuracy than manual labeling (p < 0.001). The retrospective implantation accuracy of the target point was 2.4 ± 1.1 mm. A multifactorial analysis determined that almost 58% of the total error was attributable to measurable factors. The remaining 42% was attributable to random error.
Název v anglickém jazyce
Automated Identification of Stereoelectroencephalography Contacts and Measurement of Factors Influencing Accuracy of Frame Stereotaxy
Popis výsledku anglicky
Objective: Stereoelectroencephalography (SEEG) is an established invasive diagnostic technique for use in patients with drug-resistant focal epilepsy evaluated before resective epilepsy surgery. The factors that influence the accuracy of electrode implantation are not fully understood. Adequate accuracy prevents the risk of major surgery complications. Precise knowledge of the anatomical positions of individual electrode contacts is crucial for the interpretation of SEEG recordings and subsequent surgery. Methods: We developed an image processing pipeline to localize implanted electrodes and detect individual contact positions using computed tomography (CT), as a substitute for time-consuming manual labeling. The algorithm automates measurement of parameters of the electrodes implanted in the skull (bone thickness, implantation angle and depth) for use in modeling of predictive factors that influence implantation accuracy. Results: Fifty-four patients evaluated by SEEG were analyzed. A total of 662 SEEG electrodes with 8,745 contacts were stereotactically inserted. The automated detector localized all contacts with better accuracy than manual labeling (p < 0.001). The retrospective implantation accuracy of the target point was 2.4 ± 1.1 mm. A multifactorial analysis determined that almost 58% of the total error was attributable to measurable factors. The remaining 42% was attributable to random error.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Biomedical and Health Informatics
ISSN
2168-2194
e-ISSN
2168-2208
Svazek periodika
27
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3326-3336
Kód UT WoS článku
001022230000020
EID výsledku v databázi Scopus
2-s2.0-85159828560