Fast One-to-Many Multicriteria Shortest Path Search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367770" target="_blank" >RIV/68407700:21230/23:00367770 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TITS.2023.3282069" target="_blank" >https://doi.org/10.1109/TITS.2023.3282069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TITS.2023.3282069" target="_blank" >10.1109/TITS.2023.3282069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast One-to-Many Multicriteria Shortest Path Search
Popis výsledku v původním jazyce
Shortest path problem has been successfully applied in numerous domains. Unfortunately, its complexity increases drastically when several objective criteria must be considered. Apart from the relatively slow classic search algorithms, attempts to accelerate multicriteria shortest path search are mostly represented by goal-directed one-to-one search methods and pruning heuristics. The one-to-many version of the problem is rarely addressed, though it arises in various scenarios, such as multi-stop planning and dynamic rerouting. This paper introduces a novel algorithm combination designed for fast one-to-many multicriteria shortest path search. A preprocessing algorithm excludes irrelevant vertices by building a smaller cover graph. A modified version of the multicriteria label-setting algorithm operates on the cover graph and employs a dimensionality reduction technique for swifter domination checks. While the method itself maintains solution optimality, it is able to additionally incorporate existing heuristics for further speedups. Additionally, its operation is not limited to bicriteria cases and requires no modifications to incorporate a higher number of criteria. The proposed algorithm was tested on multiple criteria combinations of varying correlation and compared to existing one-to-one shortest path search techniques. The results show the introduced approach provides a speedup of at least 3 times on simple criteria combinations and at least over 24 times on hard instances compared to standard multicriteria label-setting, while outperforming existing one-to-one algorithms in terms of scalability. Apart from the speedup provided, graph preprocessing also reduces memory requirements of queries by up to 13 times.
Název v anglickém jazyce
Fast One-to-Many Multicriteria Shortest Path Search
Popis výsledku anglicky
Shortest path problem has been successfully applied in numerous domains. Unfortunately, its complexity increases drastically when several objective criteria must be considered. Apart from the relatively slow classic search algorithms, attempts to accelerate multicriteria shortest path search are mostly represented by goal-directed one-to-one search methods and pruning heuristics. The one-to-many version of the problem is rarely addressed, though it arises in various scenarios, such as multi-stop planning and dynamic rerouting. This paper introduces a novel algorithm combination designed for fast one-to-many multicriteria shortest path search. A preprocessing algorithm excludes irrelevant vertices by building a smaller cover graph. A modified version of the multicriteria label-setting algorithm operates on the cover graph and employs a dimensionality reduction technique for swifter domination checks. While the method itself maintains solution optimality, it is able to additionally incorporate existing heuristics for further speedups. Additionally, its operation is not limited to bicriteria cases and requires no modifications to incorporate a higher number of criteria. The proposed algorithm was tested on multiple criteria combinations of varying correlation and compared to existing one-to-one shortest path search techniques. The results show the introduced approach provides a speedup of at least 3 times on simple criteria combinations and at least over 24 times on hard instances compared to standard multicriteria label-setting, while outperforming existing one-to-one algorithms in terms of scalability. Apart from the speedup provided, graph preprocessing also reduces memory requirements of queries by up to 13 times.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Intelligent Transportation Systems
ISSN
1524-9050
e-ISSN
1558-0016
Svazek periodika
24
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
10410-10419
Kód UT WoS článku
001012409900001
EID výsledku v databázi Scopus
2-s2.0-85162640507