Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fast One-to-Many Multicriteria Shortest Path Search

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367770" target="_blank" >RIV/68407700:21230/23:00367770 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TITS.2023.3282069" target="_blank" >https://doi.org/10.1109/TITS.2023.3282069</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TITS.2023.3282069" target="_blank" >10.1109/TITS.2023.3282069</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fast One-to-Many Multicriteria Shortest Path Search

  • Popis výsledku v původním jazyce

    Shortest path problem has been successfully applied in numerous domains. Unfortunately, its complexity increases drastically when several objective criteria must be considered. Apart from the relatively slow classic search algorithms, attempts to accelerate multicriteria shortest path search are mostly represented by goal-directed one-to-one search methods and pruning heuristics. The one-to-many version of the problem is rarely addressed, though it arises in various scenarios, such as multi-stop planning and dynamic rerouting. This paper introduces a novel algorithm combination designed for fast one-to-many multicriteria shortest path search. A preprocessing algorithm excludes irrelevant vertices by building a smaller cover graph. A modified version of the multicriteria label-setting algorithm operates on the cover graph and employs a dimensionality reduction technique for swifter domination checks. While the method itself maintains solution optimality, it is able to additionally incorporate existing heuristics for further speedups. Additionally, its operation is not limited to bicriteria cases and requires no modifications to incorporate a higher number of criteria. The proposed algorithm was tested on multiple criteria combinations of varying correlation and compared to existing one-to-one shortest path search techniques. The results show the introduced approach provides a speedup of at least 3 times on simple criteria combinations and at least over 24 times on hard instances compared to standard multicriteria label-setting, while outperforming existing one-to-one algorithms in terms of scalability. Apart from the speedup provided, graph preprocessing also reduces memory requirements of queries by up to 13 times.

  • Název v anglickém jazyce

    Fast One-to-Many Multicriteria Shortest Path Search

  • Popis výsledku anglicky

    Shortest path problem has been successfully applied in numerous domains. Unfortunately, its complexity increases drastically when several objective criteria must be considered. Apart from the relatively slow classic search algorithms, attempts to accelerate multicriteria shortest path search are mostly represented by goal-directed one-to-one search methods and pruning heuristics. The one-to-many version of the problem is rarely addressed, though it arises in various scenarios, such as multi-stop planning and dynamic rerouting. This paper introduces a novel algorithm combination designed for fast one-to-many multicriteria shortest path search. A preprocessing algorithm excludes irrelevant vertices by building a smaller cover graph. A modified version of the multicriteria label-setting algorithm operates on the cover graph and employs a dimensionality reduction technique for swifter domination checks. While the method itself maintains solution optimality, it is able to additionally incorporate existing heuristics for further speedups. Additionally, its operation is not limited to bicriteria cases and requires no modifications to incorporate a higher number of criteria. The proposed algorithm was tested on multiple criteria combinations of varying correlation and compared to existing one-to-one shortest path search techniques. The results show the introduced approach provides a speedup of at least 3 times on simple criteria combinations and at least over 24 times on hard instances compared to standard multicriteria label-setting, while outperforming existing one-to-one algorithms in terms of scalability. Apart from the speedup provided, graph preprocessing also reduces memory requirements of queries by up to 13 times.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Intelligent Transportation Systems

  • ISSN

    1524-9050

  • e-ISSN

    1558-0016

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

    10410-10419

  • Kód UT WoS článku

    001012409900001

  • EID výsledku v databázi Scopus

    2-s2.0-85162640507