Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Disrupting Active Directory Attacks with Deep Learning for Organic Honeyuser Placement

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367810" target="_blank" >RIV/68407700:21230/23:00367810 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-37320-6_6" target="_blank" >https://doi.org/10.1007/978-3-031-37320-6_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-37320-6_6" target="_blank" >10.1007/978-3-031-37320-6_6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Disrupting Active Directory Attacks with Deep Learning for Organic Honeyuser Placement

  • Popis výsledku v původním jazyce

    Honeypots have been a long-established form of passive defense in a wide variety of systems. They are often used for the reliability and low false positive rate. However, the deployment of honeypots in the Active Directory (AD) systems is still limited. Intrusion detection in AD systems is a difficult task due to the complexity of the system and its design, where any authenticated account is able to query other entities in the system. Therefore, the positioning of the honeypot in such structures brings two main con trains: (i) the placement has to be organic, with similar properties to other, real entities in the structure, and (ii) the placement must not give away the nature of the honeypot to the attacker. In this work, we present a model based on a variational autoencoder capable of producing organic placements for AD structures. We show that the proposed model is capable of learning meaningful latent representations of the nodes in the AD structures and predicting new node placement with similar properties. Analysis of the latent space shows that the model can capture complex relationships between nodes with low-dimensional latent space. Our method is evaluated based on the (i) similarity with the input graphs, (ii) properties of the generated nodes, and (iii) comparison with other generative graph models. Further experiments with human attackers show that the proposed method outperforms the random honeypot placement baseline.

  • Název v anglickém jazyce

    Disrupting Active Directory Attacks with Deep Learning for Organic Honeyuser Placement

  • Popis výsledku anglicky

    Honeypots have been a long-established form of passive defense in a wide variety of systems. They are often used for the reliability and low false positive rate. However, the deployment of honeypots in the Active Directory (AD) systems is still limited. Intrusion detection in AD systems is a difficult task due to the complexity of the system and its design, where any authenticated account is able to query other entities in the system. Therefore, the positioning of the honeypot in such structures brings two main con trains: (i) the placement has to be organic, with similar properties to other, real entities in the structure, and (ii) the placement must not give away the nature of the honeypot to the attacker. In this work, we present a model based on a variational autoencoder capable of producing organic placements for AD structures. We show that the proposed model is capable of learning meaningful latent representations of the nodes in the AD structures and predicting new node placement with similar properties. Analysis of the latent space shows that the model can capture complex relationships between nodes with low-dimensional latent space. Our method is evaluated based on the (i) similarity with the input graphs, (ii) properties of the generated nodes, and (iii) comparison with other generative graph models. Further experiments with human attackers show that the proposed method outperforms the random honeypot placement baseline.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Deep Learning Theory and Applications

  • ISBN

    978-3-031-37319-0

  • ISSN

    1865-0929

  • e-ISSN

    1865-0937

  • Počet stran výsledku

    23

  • Strana od-do

    111-133

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Basel

  • Místo konání akce

    Virtual

  • Datum konání akce

    8. 7. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku