Disrupting Active Directory Attacks with Deep Learning for Organic Honeyuser Placement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367810" target="_blank" >RIV/68407700:21230/23:00367810 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-37320-6_6" target="_blank" >https://doi.org/10.1007/978-3-031-37320-6_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-37320-6_6" target="_blank" >10.1007/978-3-031-37320-6_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Disrupting Active Directory Attacks with Deep Learning for Organic Honeyuser Placement
Popis výsledku v původním jazyce
Honeypots have been a long-established form of passive defense in a wide variety of systems. They are often used for the reliability and low false positive rate. However, the deployment of honeypots in the Active Directory (AD) systems is still limited. Intrusion detection in AD systems is a difficult task due to the complexity of the system and its design, where any authenticated account is able to query other entities in the system. Therefore, the positioning of the honeypot in such structures brings two main con trains: (i) the placement has to be organic, with similar properties to other, real entities in the structure, and (ii) the placement must not give away the nature of the honeypot to the attacker. In this work, we present a model based on a variational autoencoder capable of producing organic placements for AD structures. We show that the proposed model is capable of learning meaningful latent representations of the nodes in the AD structures and predicting new node placement with similar properties. Analysis of the latent space shows that the model can capture complex relationships between nodes with low-dimensional latent space. Our method is evaluated based on the (i) similarity with the input graphs, (ii) properties of the generated nodes, and (iii) comparison with other generative graph models. Further experiments with human attackers show that the proposed method outperforms the random honeypot placement baseline.
Název v anglickém jazyce
Disrupting Active Directory Attacks with Deep Learning for Organic Honeyuser Placement
Popis výsledku anglicky
Honeypots have been a long-established form of passive defense in a wide variety of systems. They are often used for the reliability and low false positive rate. However, the deployment of honeypots in the Active Directory (AD) systems is still limited. Intrusion detection in AD systems is a difficult task due to the complexity of the system and its design, where any authenticated account is able to query other entities in the system. Therefore, the positioning of the honeypot in such structures brings two main con trains: (i) the placement has to be organic, with similar properties to other, real entities in the structure, and (ii) the placement must not give away the nature of the honeypot to the attacker. In this work, we present a model based on a variational autoencoder capable of producing organic placements for AD structures. We show that the proposed model is capable of learning meaningful latent representations of the nodes in the AD structures and predicting new node placement with similar properties. Analysis of the latent space shows that the model can capture complex relationships between nodes with low-dimensional latent space. Our method is evaluated based on the (i) similarity with the input graphs, (ii) properties of the generated nodes, and (iii) comparison with other generative graph models. Further experiments with human attackers show that the proposed method outperforms the random honeypot placement baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Deep Learning Theory and Applications
ISBN
978-3-031-37319-0
ISSN
1865-0929
e-ISSN
1865-0937
Počet stran výsledku
23
Strana od-do
111-133
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
Virtual
Datum konání akce
8. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—