Deep generative models to extend active directory graphs with honeypot users
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351092" target="_blank" >RIV/68407700:21230/21:00351092 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0010556601400147" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0010556601400147</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010556601400147" target="_blank" >10.5220/0010556601400147</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep generative models to extend active directory graphs with honeypot users
Popis výsledku v původním jazyce
Active Directory (AD) is a crucial element of large organizations, given its central role in managing access to resources. Since AD is used by all users in the organization, it is hard to detect attackers. We propose to generate and place fake users (honeyusers) in AD structures to help detect attacks. However, not any honeyuser will attract attackers. Our method generates honeyusers with a Variational Autoencoder that enriches the AD structure with well-positioned honeyusers. It first learns the embeddings of the original nodes and edges in the AD, then it uses a modified Bidirectional DAG-RNN to encode the parameters of the probability distribution of the latent space of node representations. Finally, it samples nodes from this distribution and uses an MLP to decide where the nodes are connected. The model was evaluated by the similarity of the generated AD with the original, by the positions of the new nodes, by the similarity with GraphRNN and finally by making real intruders attack the generated AD structure to see if they select the honeyusers. Results show that our machine learning model is good enough to generate well-placed honeyusers for existing AD structures so that intruders are lured into them.
Název v anglickém jazyce
Deep generative models to extend active directory graphs with honeypot users
Popis výsledku anglicky
Active Directory (AD) is a crucial element of large organizations, given its central role in managing access to resources. Since AD is used by all users in the organization, it is hard to detect attackers. We propose to generate and place fake users (honeyusers) in AD structures to help detect attacks. However, not any honeyuser will attract attackers. Our method generates honeyusers with a Variational Autoencoder that enriches the AD structure with well-positioned honeyusers. It first learns the embeddings of the original nodes and edges in the AD, then it uses a modified Bidirectional DAG-RNN to encode the parameters of the probability distribution of the latent space of node representations. Finally, it samples nodes from this distribution and uses an MLP to decide where the nodes are connected. The model was evaluated by the similarity of the generated AD with the original, by the positions of the new nodes, by the similarity with GraphRNN and finally by making real intruders attack the generated AD structure to see if they select the honeyusers. Results show that our machine learning model is good enough to generate well-placed honeyusers for existing AD structures so that intruders are lured into them.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA
ISBN
978-989-758-526-5
ISSN
2184-9277
e-ISSN
—
Počet stran výsledku
8
Strana od-do
140-147
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Online streaming
Datum konání akce
7. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—