Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep generative models to extend active directory graphs with honeypot users

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351092" target="_blank" >RIV/68407700:21230/21:00351092 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0010556601400147" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0010556601400147</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0010556601400147" target="_blank" >10.5220/0010556601400147</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep generative models to extend active directory graphs with honeypot users

  • Popis výsledku v původním jazyce

    Active Directory (AD) is a crucial element of large organizations, given its central role in managing access to resources. Since AD is used by all users in the organization, it is hard to detect attackers. We propose to generate and place fake users (honeyusers) in AD structures to help detect attacks. However, not any honeyuser will attract attackers. Our method generates honeyusers with a Variational Autoencoder that enriches the AD structure with well-positioned honeyusers. It first learns the embeddings of the original nodes and edges in the AD, then it uses a modified Bidirectional DAG-RNN to encode the parameters of the probability distribution of the latent space of node representations. Finally, it samples nodes from this distribution and uses an MLP to decide where the nodes are connected. The model was evaluated by the similarity of the generated AD with the original, by the positions of the new nodes, by the similarity with GraphRNN and finally by making real intruders attack the generated AD structure to see if they select the honeyusers. Results show that our machine learning model is good enough to generate well-placed honeyusers for existing AD structures so that intruders are lured into them.

  • Název v anglickém jazyce

    Deep generative models to extend active directory graphs with honeypot users

  • Popis výsledku anglicky

    Active Directory (AD) is a crucial element of large organizations, given its central role in managing access to resources. Since AD is used by all users in the organization, it is hard to detect attackers. We propose to generate and place fake users (honeyusers) in AD structures to help detect attacks. However, not any honeyuser will attract attackers. Our method generates honeyusers with a Variational Autoencoder that enriches the AD structure with well-positioned honeyusers. It first learns the embeddings of the original nodes and edges in the AD, then it uses a modified Bidirectional DAG-RNN to encode the parameters of the probability distribution of the latent space of node representations. Finally, it samples nodes from this distribution and uses an MLP to decide where the nodes are connected. The model was evaluated by the similarity of the generated AD with the original, by the positions of the new nodes, by the similarity with GraphRNN and finally by making real intruders attack the generated AD structure to see if they select the honeyusers. Results show that our machine learning model is good enough to generate well-placed honeyusers for existing AD structures so that intruders are lured into them.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA

  • ISBN

    978-989-758-526-5

  • ISSN

    2184-9277

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    140-147

  • Název nakladatele

    SciTePress - Science and Technology Publications

  • Místo vydání

    Porto

  • Místo konání akce

    Online streaming

  • Datum konání akce

    7. 7. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku