Counting and Sampling Models in First-Order Logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00367820" target="_blank" >RIV/68407700:21230/23:00367820 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/ijcai.2023/801" target="_blank" >https://doi.org/10.24963/ijcai.2023/801</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2023/801" target="_blank" >10.24963/ijcai.2023/801</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Counting and Sampling Models in First-Order Logic
Popis výsledku v původním jazyce
First-order model counting (FOMC) is the task of counting models of a first-order logic sentence over a given set of domain elements. Its weighted variant, WFOMC, generalizes FOMC by assigning weights to the models and has many applications in statistical relational learning. More than ten years of research by various authors has led to identification of non-trivial classes of WFOMC problems that can be solved in time polynomial in the number of domain elements. In this paper, we describe recent works on WFOMC and the related problem of weighted first-order model sampling (WFOMS). We also discuss possible applications of WFOMC and WFOMS within statistical relational learning and beyond, e.g., automated solving of problems from enumerative combinatorics and elementary probability theory. Finally, we mention research problems that still need to be tackled in order to make applications of these methods really practical more broadly.
Název v anglickém jazyce
Counting and Sampling Models in First-Order Logic
Popis výsledku anglicky
First-order model counting (FOMC) is the task of counting models of a first-order logic sentence over a given set of domain elements. Its weighted variant, WFOMC, generalizes FOMC by assigning weights to the models and has many applications in statistical relational learning. More than ten years of research by various authors has led to identification of non-trivial classes of WFOMC problems that can be solved in time polynomial in the number of domain elements. In this paper, we describe recent works on WFOMC and the related problem of weighted first-order model sampling (WFOMS). We also discuss possible applications of WFOMC and WFOMS within statistical relational learning and beyond, e.g., automated solving of problems from enumerative combinatorics and elementary probability theory. Finally, we mention research problems that still need to be tackled in order to make applications of these methods really practical more broadly.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
ISBN
978-1-956792-03-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
7020-7025
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Macao
Datum konání akce
19. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—