Position-Time Pattern Based Method for Analyzing Users’ Mobility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368061" target="_blank" >RIV/68407700:21230/23:00368061 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/VTC2023-Spring57618.2023.10201211" target="_blank" >http://dx.doi.org/10.1109/VTC2023-Spring57618.2023.10201211</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/VTC2023-Spring57618.2023.10201211" target="_blank" >10.1109/VTC2023-Spring57618.2023.10201211</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Position-Time Pattern Based Method for Analyzing Users’ Mobility
Popis výsledku v původním jazyce
Mobile network users’ movements analysis has increasingly importance with the mobile networks evolution. Time-spatial information about current and previous locations can contribute in optimizing mobile network performance. Extracting features from this information is the most common method in analyzing users’ mobility. In this paper, a new position-time pattern based method is proposed to analyze the mobility by translating time-spatial records of each user to target-oriented image. Dataset provided from an ISP in Shanghai city for one month is used in our work. The proposed method is deducing user’ mobility behavior by visualizing serving base stations positions vs time according to unified rules for all users. Mobility pattern ambiguity resulting from neighboring base stations is processed. Moreover, K-Nearest Neighbors based method is suggested to predict base stations neighborhood. Results shows that visualizing time-spatial dataset, with proper processing of neighboring base stations issue, provide better understanding of users’ mobility data analysis.
Název v anglickém jazyce
Position-Time Pattern Based Method for Analyzing Users’ Mobility
Popis výsledku anglicky
Mobile network users’ movements analysis has increasingly importance with the mobile networks evolution. Time-spatial information about current and previous locations can contribute in optimizing mobile network performance. Extracting features from this information is the most common method in analyzing users’ mobility. In this paper, a new position-time pattern based method is proposed to analyze the mobility by translating time-spatial records of each user to target-oriented image. Dataset provided from an ISP in Shanghai city for one month is used in our work. The proposed method is deducing user’ mobility behavior by visualizing serving base stations positions vs time according to unified rules for all users. Mobility pattern ambiguity resulting from neighboring base stations is processed. Moreover, K-Nearest Neighbors based method is suggested to predict base stations neighborhood. Results shows that visualizing time-spatial dataset, with proper processing of neighboring base stations issue, provide better understanding of users’ mobility data analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE 97th Vehicular Technology Conference
ISBN
979-8-3503-1114-3
ISSN
2577-2465
e-ISSN
2577-2465
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE Industrial Electronic Society
Místo vydání
Vienna
Místo konání akce
Florence
Datum konání akce
20. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001054797203009