Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368384" target="_blank" >RIV/68407700:21230/23:00368384 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.iot.2023.100846" target="_blank" >https://doi.org/10.1016/j.iot.2023.100846</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.iot.2023.100846" target="_blank" >10.1016/j.iot.2023.100846</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions

  • Popis výsledku v původním jazyce

    The majority of communication protocols used in IoT networks for caching and congestion control techniques were rule-based which implies that these protocols are dependent on explicitly stated static models. To solve this issue, techniques are becoming more adaptive to changes in the network environment by incorporating a learning-based approach using Machine Learning (ML) and Deep Learning (DL). Recent surveys and review papers have covered topics on the use of ML and DL in either caching or congestion control techniques used in various types of networks. However, there is not an article in the literature dedicated to surveying the design of caching and congestion control mechanisms in IoT networks from the perspective of a Deep Reinforcement Learning (DRL) problem. Hence, this work aimed to survey the state-of-the-art DRL-based caching and congestion control techniques in IoT networks from 2019 to 2023. It also presented general frameworks for DRL-based caching and congestion control techniques based on surveyed works as a baseline for designing future protocols in IoT networks. Moreover, this paper classified the parameter choices of surveyed DRL-based techniques and identified the issues and challenges behind these techniques. Finally, a discussion of the possible future directions of this research domain was presented.

  • Název v anglickém jazyce

    Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions

  • Popis výsledku anglicky

    The majority of communication protocols used in IoT networks for caching and congestion control techniques were rule-based which implies that these protocols are dependent on explicitly stated static models. To solve this issue, techniques are becoming more adaptive to changes in the network environment by incorporating a learning-based approach using Machine Learning (ML) and Deep Learning (DL). Recent surveys and review papers have covered topics on the use of ML and DL in either caching or congestion control techniques used in various types of networks. However, there is not an article in the literature dedicated to surveying the design of caching and congestion control mechanisms in IoT networks from the perspective of a Deep Reinforcement Learning (DRL) problem. Hence, this work aimed to survey the state-of-the-art DRL-based caching and congestion control techniques in IoT networks from 2019 to 2023. It also presented general frameworks for DRL-based caching and congestion control techniques based on surveyed works as a baseline for designing future protocols in IoT networks. Moreover, this paper classified the parameter choices of surveyed DRL-based techniques and identified the issues and challenges behind these techniques. Finally, a discussion of the possible future directions of this research domain was presented.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Internet of Things

  • ISSN

    2543-1536

  • e-ISSN

    2542-6605

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

  • Kód UT WoS článku

    001059956100001

  • EID výsledku v databázi Scopus

    2-s2.0-85163979729