Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368384" target="_blank" >RIV/68407700:21230/23:00368384 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.iot.2023.100846" target="_blank" >https://doi.org/10.1016/j.iot.2023.100846</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.iot.2023.100846" target="_blank" >10.1016/j.iot.2023.100846</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions
Popis výsledku v původním jazyce
The majority of communication protocols used in IoT networks for caching and congestion control techniques were rule-based which implies that these protocols are dependent on explicitly stated static models. To solve this issue, techniques are becoming more adaptive to changes in the network environment by incorporating a learning-based approach using Machine Learning (ML) and Deep Learning (DL). Recent surveys and review papers have covered topics on the use of ML and DL in either caching or congestion control techniques used in various types of networks. However, there is not an article in the literature dedicated to surveying the design of caching and congestion control mechanisms in IoT networks from the perspective of a Deep Reinforcement Learning (DRL) problem. Hence, this work aimed to survey the state-of-the-art DRL-based caching and congestion control techniques in IoT networks from 2019 to 2023. It also presented general frameworks for DRL-based caching and congestion control techniques based on surveyed works as a baseline for designing future protocols in IoT networks. Moreover, this paper classified the parameter choices of surveyed DRL-based techniques and identified the issues and challenges behind these techniques. Finally, a discussion of the possible future directions of this research domain was presented.
Název v anglickém jazyce
Deep Reinforcement Learning Perspectives on Improving Reliable Transmissions in IoT Networks: Problem Formulation, Parameter Choices, Challenges, and Future Directions
Popis výsledku anglicky
The majority of communication protocols used in IoT networks for caching and congestion control techniques were rule-based which implies that these protocols are dependent on explicitly stated static models. To solve this issue, techniques are becoming more adaptive to changes in the network environment by incorporating a learning-based approach using Machine Learning (ML) and Deep Learning (DL). Recent surveys and review papers have covered topics on the use of ML and DL in either caching or congestion control techniques used in various types of networks. However, there is not an article in the literature dedicated to surveying the design of caching and congestion control mechanisms in IoT networks from the perspective of a Deep Reinforcement Learning (DRL) problem. Hence, this work aimed to survey the state-of-the-art DRL-based caching and congestion control techniques in IoT networks from 2019 to 2023. It also presented general frameworks for DRL-based caching and congestion control techniques based on surveyed works as a baseline for designing future protocols in IoT networks. Moreover, this paper classified the parameter choices of surveyed DRL-based techniques and identified the issues and challenges behind these techniques. Finally, a discussion of the possible future directions of this research domain was presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Internet of Things
ISSN
2543-1536
e-ISSN
2542-6605
Svazek periodika
23
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
001059956100001
EID výsledku v databázi Scopus
2-s2.0-85163979729