A Markov Decision Process Model for a Reinforcement Learning-based Autonomous Pedestrian Crossing Protocol
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F21%3A00357837" target="_blank" >RIV/68407700:21260/21:00357837 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/MENACOMM50742.2021.9678310" target="_blank" >https://doi.org/10.1109/MENACOMM50742.2021.9678310</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MENACOMM50742.2021.9678310" target="_blank" >10.1109/MENACOMM50742.2021.9678310</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Markov Decision Process Model for a Reinforcement Learning-based Autonomous Pedestrian Crossing Protocol
Popis výsledku v původním jazyce
Autonomous Traffic Management (ATM) systems empowered with Machine Learning (ML) technics are a promising solution for eliminating traffic light and decreasing traffic congestion in the future. However, few efforts have focused on integrating pedestrians in ATM, namely the static programming-based cooperative protocol called Autonomous Pedestrian Crossing (APC). In this paper, we model a Markov Decision Process (MDP) to enable a Deep Reinforcement Learning (DRL)-based version of APC protocol that is able to dynamically achieve the same objectives (i.e. decreasing traffic delay at the crossing area). Using concrete state space, action set and reward functions, our model forces the Autonomous Vehicle (AV) to "think"and behave according to APC architecture. Compared to the traditional programming APC system, our approach permits the AV to learn from its previous experiences in non-signalized crossing and optimize the distance and the velocity parameters accordingly.
Název v anglickém jazyce
A Markov Decision Process Model for a Reinforcement Learning-based Autonomous Pedestrian Crossing Protocol
Popis výsledku anglicky
Autonomous Traffic Management (ATM) systems empowered with Machine Learning (ML) technics are a promising solution for eliminating traffic light and decreasing traffic congestion in the future. However, few efforts have focused on integrating pedestrians in ATM, namely the static programming-based cooperative protocol called Autonomous Pedestrian Crossing (APC). In this paper, we model a Markov Decision Process (MDP) to enable a Deep Reinforcement Learning (DRL)-based version of APC protocol that is able to dynamically achieve the same objectives (i.e. decreasing traffic delay at the crossing area). Using concrete state space, action set and reward functions, our model forces the Autonomous Vehicle (AV) to "think"and behave according to APC architecture. Compared to the traditional programming APC system, our approach permits the AV to learn from its previous experiences in non-signalized crossing and optimize the distance and the velocity parameters accordingly.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM)
ISBN
978-1-6654-3443-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
147-151
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Agadir
Datum konání akce
3. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—