Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00369657" target="_blank" >RIV/68407700:21230/23:00369657 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00369657
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV51070.2023.01692" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01692</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV51070.2023.01692" target="_blank" >10.1109/ICCV51070.2023.01692</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra
Popis výsledku v původním jazyce
Neural Radiance Fields (NeRFs) are a very recent and very popular approach for the problems of novel view syn thesis and 3D reconstruction. A popular scene representa tion used by NeRFs is to combine a uniform, voxel-based subdivision of the scene with an MLP. Based on the ob servation that a (sparse) point cloud of the scene is often available, this paper proposes to use an adaptive represen tation based on tetrahedra obtained by Delaunay triangula tion instead of uniform subdivision or point-based represen tations. We show that such a representation enables efficient training and leads to state-of-the-art results. Our approach elegantly combines concepts from 3D geometry process ing, triangle-based rendering, and modern neural radiance fields. Compared to voxel-based representations, ours pro vides more detail around parts of the scene likely to be close to the surface. Compared to point-based representations, our approach achieves better performance. The source code is publicly available at: https://jkulhanek.com/tetra-nerf.
Název v anglickém jazyce
Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra
Popis výsledku anglicky
Neural Radiance Fields (NeRFs) are a very recent and very popular approach for the problems of novel view syn thesis and 3D reconstruction. A popular scene representa tion used by NeRFs is to combine a uniform, voxel-based subdivision of the scene with an MLP. Based on the ob servation that a (sparse) point cloud of the scene is often available, this paper proposes to use an adaptive represen tation based on tetrahedra obtained by Delaunay triangula tion instead of uniform subdivision or point-based represen tations. We show that such a representation enables efficient training and leads to state-of-the-art results. Our approach elegantly combines concepts from 3D geometry process ing, triangle-based rendering, and modern neural radiance fields. Compared to voxel-based representations, ours pro vides more detail around parts of the scene likely to be close to the surface. Compared to point-based representations, our approach achieves better performance. The source code is publicly available at: https://jkulhanek.com/tetra-nerf.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX23-07973X" target="_blank" >GX23-07973X: Sjednocená Reprezentace 3D Map</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCV2023: Proceedings of the International Conference on Computer Vision
ISBN
979-8-3503-0719-1
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
12
Strana od-do
18412-18423
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Paris
Datum konání akce
2. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001169500503004