Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Calibrated Out-of-Distribution Detection with a Generic Representation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371043" target="_blank" >RIV/68407700:21230/23:00371043 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ICCVW60793.2023.00485" target="_blank" >https://doi.org/10.1109/ICCVW60793.2023.00485</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCVW60793.2023.00485" target="_blank" >10.1109/ICCVW60793.2023.00485</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Calibrated Out-of-Distribution Detection with a Generic Representation

  • Popis výsledku v původním jazyce

    Out-of-distribution detection is a common issue in deploying vision models in practice and solving it is an essential building block in safety critical applications. Most of the existing OOD detection solutions focus on improving the OOD robustness of a classification model trained exclusively on in-distribution (ID) data. In this work, we take a different approach and propose to leverage generic pre-trained representation. We propose a novel OOD method, called GROOD, that formulates the OOD detection as a Neyman-Pearson task with well calibrated scores and which achieves excellent performance, predicated by the use of a good generic representation. Only a trivial training process is required for adapting GROOD to a particular problem. The method is simple, general, efficient, calibrated and with only a few hyper-parameters. The method achieves state-of-the-art performance on a number of OOD benchmarks, reaching near perfect performance on several of them. The source code is available at https://github.com/vojirt/GROOD.

  • Název v anglickém jazyce

    Calibrated Out-of-Distribution Detection with a Generic Representation

  • Popis výsledku anglicky

    Out-of-distribution detection is a common issue in deploying vision models in practice and solving it is an essential building block in safety critical applications. Most of the existing OOD detection solutions focus on improving the OOD robustness of a classification model trained exclusively on in-distribution (ID) data. In this work, we take a different approach and propose to leverage generic pre-trained representation. We propose a novel OOD method, called GROOD, that formulates the OOD detection as a Neyman-Pearson task with well calibrated scores and which achieves excellent performance, predicated by the use of a good generic representation. Only a trivial training process is required for adapting GROOD to a particular problem. The method is simple, general, efficient, calibrated and with only a few hyper-parameters. The method achieves state-of-the-art performance on a number of OOD benchmarks, reaching near perfect performance on several of them. The source code is available at https://github.com/vojirt/GROOD.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICCVW2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)

  • ISBN

    979-8-3503-0744-3

  • ISSN

    2473-9936

  • e-ISSN

    2473-9944

  • Počet stran výsledku

    10

  • Strana od-do

    4509-4518

  • Název nakladatele

    IEEE

  • Místo vydání

    Anchorage, Alaska

  • Místo konání akce

    Paris

  • Datum konání akce

    2. 10. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001156680304064