Graph-based LiDAR-Inertial SLAM Enhanced by Loosely-Coupled Visual Odometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00372387" target="_blank" >RIV/68407700:21230/23:00372387 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ECMR59166.2023.10256360" target="_blank" >https://doi.org/10.1109/ECMR59166.2023.10256360</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ECMR59166.2023.10256360" target="_blank" >10.1109/ECMR59166.2023.10256360</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph-based LiDAR-Inertial SLAM Enhanced by Loosely-Coupled Visual Odometry
Popis výsledku v původním jazyce
In this paper, we address robot localization using Simultaneous Localization and Mapping (SLAM) with Light Detection and Ranging (LiDAR) perception enhanced by visual odometry in scenarios where laser scan matching can be ambiguous because of a lack of sufficient features in the scan. We propose a Graph-based SLAM approach that benefits from fusing data from multiple types of sensors to overcome the disadvantages of using only LiDAR data for localization. The proposed method uses a failure detection model based on the quality of the LiDAR scan matching and inertial measurement unit data. The failure model improves LiDAR-based localization by an additional localization source, including low-cost blackbox visual odometers like the Intel RealSense T265. The proposed method is compared to the state-of-the-art localization system LIO-SAM in cluttered and open urban areas. Based on the performed experimental deployments, the proposed failure detection model with black-box visual odometry sensor yields improved localization performance measured by the absolute trajectory and relative pose error indicators.
Název v anglickém jazyce
Graph-based LiDAR-Inertial SLAM Enhanced by Loosely-Coupled Visual Odometry
Popis výsledku anglicky
In this paper, we address robot localization using Simultaneous Localization and Mapping (SLAM) with Light Detection and Ranging (LiDAR) perception enhanced by visual odometry in scenarios where laser scan matching can be ambiguous because of a lack of sufficient features in the scan. We propose a Graph-based SLAM approach that benefits from fusing data from multiple types of sensors to overcome the disadvantages of using only LiDAR data for localization. The proposed method uses a failure detection model based on the quality of the LiDAR scan matching and inertial measurement unit data. The failure model improves LiDAR-based localization by an additional localization source, including low-cost blackbox visual odometers like the Intel RealSense T265. The proposed method is compared to the state-of-the-art localization system LIO-SAM in cluttered and open urban areas. Based on the performed experimental deployments, the proposed failure detection model with black-box visual odometry sensor yields improved localization performance measured by the absolute trajectory and relative pose error indicators.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-05762S" target="_blank" >GA22-05762S: Optimální řešení robotických směrovacích úloh</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 11th European Conference on Mobile Robots
ISBN
979-8-3503-0704-7
ISSN
2639-7919
e-ISSN
—
Počet stran výsledku
8
Strana od-do
278-285
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Brighton
Místo konání akce
Coimbra
Datum konání akce
4. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001082260500041