Federated Reinforcement Learning for Collective Navigation of Robotic Swarms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373781" target="_blank" >RIV/68407700:21230/23:00373781 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TCDS.2023.3239815" target="_blank" >https://doi.org/10.1109/TCDS.2023.3239815</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCDS.2023.3239815" target="_blank" >10.1109/TCDS.2023.3239815</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Federated Reinforcement Learning for Collective Navigation of Robotic Swarms
Popis výsledku v původním jazyce
The recent advancement of deep reinforcement learning (DRL) contributed to robotics by allowing automatic controller design. The automatic controller design is a crucial approach for designing swarm robotic systems, which require more complex controllers than a single robot system to lead a desired collective behavior. Although the DRL-based controller design method showed its effectiveness for swarm robotic systems, the reliance on the central training server is a critical problem in real-world environments where robot-server communication is unstable or limited. We propose a novel federated learning (FL)-based DRL training strategy federated learning DDPG (FLDDPG) for use in swarm robotic applications. Through the comparison with baseline strategies under a limited communication bandwidth scenario, it is shown that the FLDDPG method resulted in higher robustness and generalization ability into a different environment and real robots, while the baseline strategies suffer from the limitation of communication bandwidth. This result suggests that the proposed method can benefit swarm robotic systems operating in environments with limited communication bandwidth, e.g., in high radiation, underwater, or subterranean environments.
Název v anglickém jazyce
Federated Reinforcement Learning for Collective Navigation of Robotic Swarms
Popis výsledku anglicky
The recent advancement of deep reinforcement learning (DRL) contributed to robotics by allowing automatic controller design. The automatic controller design is a crucial approach for designing swarm robotic systems, which require more complex controllers than a single robot system to lead a desired collective behavior. Although the DRL-based controller design method showed its effectiveness for swarm robotic systems, the reliance on the central training server is a critical problem in real-world environments where robot-server communication is unstable or limited. We propose a novel federated learning (FL)-based DRL training strategy federated learning DDPG (FLDDPG) for use in swarm robotic applications. Through the comparison with baseline strategies under a limited communication bandwidth scenario, it is shown that the FLDDPG method resulted in higher robustness and generalization ability into a different environment and real robots, while the baseline strategies suffer from the limitation of communication bandwidth. This result suggests that the proposed method can benefit swarm robotic systems operating in environments with limited communication bandwidth, e.g., in high radiation, underwater, or subterranean environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Cognitive and Developmental Systems
ISSN
2379-8920
e-ISSN
2379-8939
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
2122-2131
Kód UT WoS článku
001126639000051
EID výsledku v databázi Scopus
2-s2.0-85147295543