Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Federated Reinforcement Learning for Collective Navigation of Robotic Swarms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00373781" target="_blank" >RIV/68407700:21230/23:00373781 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TCDS.2023.3239815" target="_blank" >https://doi.org/10.1109/TCDS.2023.3239815</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TCDS.2023.3239815" target="_blank" >10.1109/TCDS.2023.3239815</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Federated Reinforcement Learning for Collective Navigation of Robotic Swarms

  • Popis výsledku v původním jazyce

    The recent advancement of deep reinforcement learning (DRL) contributed to robotics by allowing automatic controller design. The automatic controller design is a crucial approach for designing swarm robotic systems, which require more complex controllers than a single robot system to lead a desired collective behavior. Although the DRL-based controller design method showed its effectiveness for swarm robotic systems, the reliance on the central training server is a critical problem in real-world environments where robot-server communication is unstable or limited. We propose a novel federated learning (FL)-based DRL training strategy federated learning DDPG (FLDDPG) for use in swarm robotic applications. Through the comparison with baseline strategies under a limited communication bandwidth scenario, it is shown that the FLDDPG method resulted in higher robustness and generalization ability into a different environment and real robots, while the baseline strategies suffer from the limitation of communication bandwidth. This result suggests that the proposed method can benefit swarm robotic systems operating in environments with limited communication bandwidth, e.g., in high radiation, underwater, or subterranean environments.

  • Název v anglickém jazyce

    Federated Reinforcement Learning for Collective Navigation of Robotic Swarms

  • Popis výsledku anglicky

    The recent advancement of deep reinforcement learning (DRL) contributed to robotics by allowing automatic controller design. The automatic controller design is a crucial approach for designing swarm robotic systems, which require more complex controllers than a single robot system to lead a desired collective behavior. Although the DRL-based controller design method showed its effectiveness for swarm robotic systems, the reliance on the central training server is a critical problem in real-world environments where robot-server communication is unstable or limited. We propose a novel federated learning (FL)-based DRL training strategy federated learning DDPG (FLDDPG) for use in swarm robotic applications. Through the comparison with baseline strategies under a limited communication bandwidth scenario, it is shown that the FLDDPG method resulted in higher robustness and generalization ability into a different environment and real robots, while the baseline strategies suffer from the limitation of communication bandwidth. This result suggests that the proposed method can benefit swarm robotic systems operating in environments with limited communication bandwidth, e.g., in high radiation, underwater, or subterranean environments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Cognitive and Developmental Systems

  • ISSN

    2379-8920

  • e-ISSN

    2379-8939

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    2122-2131

  • Kód UT WoS článku

    001126639000051

  • EID výsledku v databázi Scopus

    2-s2.0-85147295543