Exploiting ideal-sparsity in the generalized moment problem with application to matrix factorization ranks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00370382" target="_blank" >RIV/68407700:21230/24:00370382 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10107-023-01993-x" target="_blank" >https://doi.org/10.1007/s10107-023-01993-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-023-01993-x" target="_blank" >10.1007/s10107-023-01993-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting ideal-sparsity in the generalized moment problem with application to matrix factorization ranks
Popis výsledku v původním jazyce
We explore a new type of sparsity for the generalized moment problem (GMP) that we call ideal-sparsity. In this setting, one optimizes over a measure restricted to be supported on the variety of an ideal generated by quadratic bilinear monomials. We show that this restriction enables an equivalent sparse reformulation of the GMP, where the single (high dimensional) measure variable is replaced by several (lower dimensional) measure variables supported on the maximal cliques of the graph corresponding to the quadratic bilinear constraints. We explore the resulting hierarchies of moment-based relaxations for the original dense formulation of GMP and this new, equivalent ideal-sparse reformulation, when applied to the problem of bounding nonnegative- and completely positive matrix factorization ranks. We show that the ideal-sparse hierarchies provide bounds that are at least as good (and often tighter) as those obtained from the dense hierarchy. This is in sharp contrast to the situation when exploiting correlative sparsity, as is most common in the literature, where the resulting bounds are weaker than the dense bounds. Moreover, while correlative sparsity requires the underlying graph to be chordal, no such assumption is needed for ideal-sparsity. Numerical results show that the ideal-sparse bounds are often tighter and much faster to compute than their dense analogs.
Název v anglickém jazyce
Exploiting ideal-sparsity in the generalized moment problem with application to matrix factorization ranks
Popis výsledku anglicky
We explore a new type of sparsity for the generalized moment problem (GMP) that we call ideal-sparsity. In this setting, one optimizes over a measure restricted to be supported on the variety of an ideal generated by quadratic bilinear monomials. We show that this restriction enables an equivalent sparse reformulation of the GMP, where the single (high dimensional) measure variable is replaced by several (lower dimensional) measure variables supported on the maximal cliques of the graph corresponding to the quadratic bilinear constraints. We explore the resulting hierarchies of moment-based relaxations for the original dense formulation of GMP and this new, equivalent ideal-sparse reformulation, when applied to the problem of bounding nonnegative- and completely positive matrix factorization ranks. We show that the ideal-sparse hierarchies provide bounds that are at least as good (and often tighter) as those obtained from the dense hierarchy. This is in sharp contrast to the situation when exploiting correlative sparsity, as is most common in the literature, where the resulting bounds are weaker than the dense bounds. Moreover, while correlative sparsity requires the underlying graph to be chordal, no such assumption is needed for ideal-sparsity. Numerical results show that the ideal-sparse bounds are often tighter and much faster to compute than their dense analogs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koncept Koopmanova operátoru pro řízení komplexních nelineárních dynamických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Programming
ISSN
0025-5610
e-ISSN
1436-4646
Svazek periodika
205
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
42
Strana od-do
703-744
Kód UT WoS článku
001021517900001
EID výsledku v databázi Scopus
2-s2.0-85164161074