Graph Recovery from Incomplete Moment Information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359324" target="_blank" >RIV/68407700:21230/22:00359324 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00365-022-09563-8" target="_blank" >https://doi.org/10.1007/s00365-022-09563-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00365-022-09563-8" target="_blank" >10.1007/s00365-022-09563-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Recovery from Incomplete Moment Information
Popis výsledku v původním jazyce
We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as, for instance, in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to obtain asymptotically all the other moments by solving a hierarchy of semidefinite relaxations (viewed as moment matrix completion problems) with a specific sparsity-inducing criterion related to a weighted l(1)-norm of the moment sequence of the measure. The resulting sequence of optimal solutions converges to the whole moment sequence of the measure which is shown to be the unique optimal solution of a certain infinite-dimensional linear optimization problem (LP). Then one may recover the function by a recent extraction algorithm based on the Christoffel-Darboux kernel associated with the measure. Finally, the support of such a measure supported on a graph is a meager, very thin (hence sparse) set. Therefore, the LP on measures with this sparsity-inducing criterion can be interpreted as an analogue for infinite-dimensional signals of the LP in super-resolution for (sparse) atomic signals.
Název v anglickém jazyce
Graph Recovery from Incomplete Moment Information
Popis výsledku anglicky
We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as, for instance, in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to obtain asymptotically all the other moments by solving a hierarchy of semidefinite relaxations (viewed as moment matrix completion problems) with a specific sparsity-inducing criterion related to a weighted l(1)-norm of the moment sequence of the measure. The resulting sequence of optimal solutions converges to the whole moment sequence of the measure which is shown to be the unique optimal solution of a certain infinite-dimensional linear optimization problem (LP). Then one may recover the function by a recent extraction algorithm based on the Christoffel-Darboux kernel associated with the measure. Finally, the support of such a measure supported on a graph is a meager, very thin (hence sparse) set. Therefore, the LP on measures with this sparsity-inducing criterion can be interpreted as an analogue for infinite-dimensional signals of the LP in super-resolution for (sparse) atomic signals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Constructive Approximation
ISSN
0176-4276
e-ISSN
1432-0940
Svazek periodika
56
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
165-187
Kód UT WoS článku
000761894400001
EID výsledku v databázi Scopus
2-s2.0-85125241284