Real-time estimation of the optimal longitudinal slip ratio for attaining the maximum traction force
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372597" target="_blank" >RIV/68407700:21230/24:00372597 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.conengprac.2024.105876" target="_blank" >https://doi.org/10.1016/j.conengprac.2024.105876</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.conengprac.2024.105876" target="_blank" >10.1016/j.conengprac.2024.105876</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Real-time estimation of the optimal longitudinal slip ratio for attaining the maximum traction force
Popis výsledku v původním jazyce
Advanced driver assistant systems in vehicles, such as anti-lock brake system, electronic stability program, and traction control, heavily rely on the traction force of the wheels, which is determined by the wheels’ longitudinal slip ratio. A common method used to describe this dependency is the well-known Pacejka (magic) formula. The Pacejka (magic) formula suggests the existence of a unique optimal slip ratio, denoted as lambda_opt, for which the maximum traction force is achieved. Although the lambda_opt value slightly varies with changes in the tire-to-road interface, most studies tend to neglect the variation of lambda_opt due to its relatively low impact on the introduced error. Instead, most studies focus on estimating the maximum friction coefficient mu_max . In this paper, we address this oversimplification and propose an estimation method for lambda_opt. This paper introduces two novel approaches for real-time estimation of the slip ratio lambda_opt based on wheel dynamics. Both approaches were derived using a nonlinear twin-track model implemented in MATLAB & Simulink. The first approach uses recursive least squares, whereas the second approach employs the Unscented Kalman filter algorithm. In addition, a traction force estimator is presented because both estimators rely on either a measurement or an estimation of the traction force. To validate the performance of the proposed estimators, a high-fidelity twin-track vehicle model was initially employed. Finally, real-world experiments are presented in which the proposed algorithms are validated using an RC subscale platform.
Název v anglickém jazyce
Real-time estimation of the optimal longitudinal slip ratio for attaining the maximum traction force
Popis výsledku anglicky
Advanced driver assistant systems in vehicles, such as anti-lock brake system, electronic stability program, and traction control, heavily rely on the traction force of the wheels, which is determined by the wheels’ longitudinal slip ratio. A common method used to describe this dependency is the well-known Pacejka (magic) formula. The Pacejka (magic) formula suggests the existence of a unique optimal slip ratio, denoted as lambda_opt, for which the maximum traction force is achieved. Although the lambda_opt value slightly varies with changes in the tire-to-road interface, most studies tend to neglect the variation of lambda_opt due to its relatively low impact on the introduced error. Instead, most studies focus on estimating the maximum friction coefficient mu_max . In this paper, we address this oversimplification and propose an estimation method for lambda_opt. This paper introduces two novel approaches for real-time estimation of the slip ratio lambda_opt based on wheel dynamics. Both approaches were derived using a nonlinear twin-track model implemented in MATLAB & Simulink. The first approach uses recursive least squares, whereas the second approach employs the Unscented Kalman filter algorithm. In addition, a traction force estimator is presented because both estimators rely on either a measurement or an estimation of the traction force. To validate the performance of the proposed estimators, a high-fidelity twin-track vehicle model was initially employed. Finally, real-world experiments are presented in which the proposed algorithms are validated using an RC subscale platform.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Control Engineering Practice
ISSN
0967-0661
e-ISSN
1873-6939
Svazek periodika
145
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001174860400001
EID výsledku v databázi Scopus
2-s2.0-85185530744