Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Real-time estimation of the optimal longitudinal slip ratio for attaining the maximum traction force

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372597" target="_blank" >RIV/68407700:21230/24:00372597 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.conengprac.2024.105876" target="_blank" >https://doi.org/10.1016/j.conengprac.2024.105876</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.conengprac.2024.105876" target="_blank" >10.1016/j.conengprac.2024.105876</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Real-time estimation of the optimal longitudinal slip ratio for attaining the maximum traction force

  • Popis výsledku v původním jazyce

    Advanced driver assistant systems in vehicles, such as anti-lock brake system, electronic stability program, and traction control, heavily rely on the traction force of the wheels, which is determined by the wheels’ longitudinal slip ratio. A common method used to describe this dependency is the well-known Pacejka (magic) formula. The Pacejka (magic) formula suggests the existence of a unique optimal slip ratio, denoted as lambda_opt, for which the maximum traction force is achieved. Although the lambda_opt value slightly varies with changes in the tire-to-road interface, most studies tend to neglect the variation of lambda_opt due to its relatively low impact on the introduced error. Instead, most studies focus on estimating the maximum friction coefficient mu_max . In this paper, we address this oversimplification and propose an estimation method for lambda_opt. This paper introduces two novel approaches for real-time estimation of the slip ratio lambda_opt based on wheel dynamics. Both approaches were derived using a nonlinear twin-track model implemented in MATLAB & Simulink. The first approach uses recursive least squares, whereas the second approach employs the Unscented Kalman filter algorithm. In addition, a traction force estimator is presented because both estimators rely on either a measurement or an estimation of the traction force. To validate the performance of the proposed estimators, a high-fidelity twin-track vehicle model was initially employed. Finally, real-world experiments are presented in which the proposed algorithms are validated using an RC subscale platform.

  • Název v anglickém jazyce

    Real-time estimation of the optimal longitudinal slip ratio for attaining the maximum traction force

  • Popis výsledku anglicky

    Advanced driver assistant systems in vehicles, such as anti-lock brake system, electronic stability program, and traction control, heavily rely on the traction force of the wheels, which is determined by the wheels’ longitudinal slip ratio. A common method used to describe this dependency is the well-known Pacejka (magic) formula. The Pacejka (magic) formula suggests the existence of a unique optimal slip ratio, denoted as lambda_opt, for which the maximum traction force is achieved. Although the lambda_opt value slightly varies with changes in the tire-to-road interface, most studies tend to neglect the variation of lambda_opt due to its relatively low impact on the introduced error. Instead, most studies focus on estimating the maximum friction coefficient mu_max . In this paper, we address this oversimplification and propose an estimation method for lambda_opt. This paper introduces two novel approaches for real-time estimation of the slip ratio lambda_opt based on wheel dynamics. Both approaches were derived using a nonlinear twin-track model implemented in MATLAB & Simulink. The first approach uses recursive least squares, whereas the second approach employs the Unscented Kalman filter algorithm. In addition, a traction force estimator is presented because both estimators rely on either a measurement or an estimation of the traction force. To validate the performance of the proposed estimators, a high-fidelity twin-track vehicle model was initially employed. Finally, real-world experiments are presented in which the proposed algorithms are validated using an RC subscale platform.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Control Engineering Practice

  • ISSN

    0967-0661

  • e-ISSN

    1873-6939

  • Svazek periodika

    145

  • Číslo periodika v rámci svazku

    April

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    001174860400001

  • EID výsledku v databázi Scopus

    2-s2.0-85185530744