Multi-Objective Electric Vehicle Route and Charging Planning with Contraction Hierarchies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372690" target="_blank" >RIV/68407700:21230/24:00372690 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1609/icaps.v34i1.31467" target="_blank" >https://doi.org/10.1609/icaps.v34i1.31467</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/icaps.v34i1.31467" target="_blank" >10.1609/icaps.v34i1.31467</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Objective Electric Vehicle Route and Charging Planning with Contraction Hierarchies
Popis výsledku v původním jazyce
Electric vehicle (EV) travel planning is a complex task that involves planning the routes and the charging sessions for EVs while optimizing travel duration and cost. We show the applicability of the multi-objective EV travel planning algo- 5 rithm with practically usable solution times on country-sized road graphs with a large number of charging stations and a realistic EV model. The approach is based on multi-objective A* search enhanced by Contraction hierarchies, optimal dimensionality reduction, and sub-optimal ϵ-relaxation tech10 niques. We performed an extensive empirical evaluation on 182 000 problem instances showing the impact of various algorithm settings on real-world map of Bavaria and Germany with more than 12 000 charging stations. The results show the proposed approach is the first one capable of performing 15 such a genuine multi-objective optimization on realistically large country-scale problem instances that can achieve practically usable planning times in order of seconds with only a minor loss of solution quality. The achieved speed-up varies from ~ 11x for optimal solution to more than 250x for sub20 optimal solution compared to vanilla multi-objective A*.
Název v anglickém jazyce
Multi-Objective Electric Vehicle Route and Charging Planning with Contraction Hierarchies
Popis výsledku anglicky
Electric vehicle (EV) travel planning is a complex task that involves planning the routes and the charging sessions for EVs while optimizing travel duration and cost. We show the applicability of the multi-objective EV travel planning algo- 5 rithm with practically usable solution times on country-sized road graphs with a large number of charging stations and a realistic EV model. The approach is based on multi-objective A* search enhanced by Contraction hierarchies, optimal dimensionality reduction, and sub-optimal ϵ-relaxation tech10 niques. We performed an extensive empirical evaluation on 182 000 problem instances showing the impact of various algorithm settings on real-world map of Bavaria and Germany with more than 12 000 charging stations. The results show the proposed approach is the first one capable of performing 15 such a genuine multi-objective optimization on realistically large country-scale problem instances that can achieve practically usable planning times in order of seconds with only a minor loss of solution quality. The achieved speed-up varies from ~ 11x for optimal solution to more than 250x for sub20 optimal solution compared to vanilla multi-objective A*.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling
ISBN
978-1-57735-889-3
ISSN
2334-0835
e-ISSN
2334-0843
Počet stran výsledku
9
Strana od-do
114-122
Název nakladatele
AAAI Press
Místo vydání
Menlo Park, California
Místo konání akce
Banff
Datum konání akce
1. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—