Bridging the Explanation Gap in AI Security: A Task-Driven Approach to XAI Methods Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00373606" target="_blank" >RIV/68407700:21230/24:00373606 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0012475200003636" target="_blank" >https://doi.org/10.5220/0012475200003636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012475200003636" target="_blank" >10.5220/0012475200003636</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bridging the Explanation Gap in AI Security: A Task-Driven Approach to XAI Methods Evaluation
Popis výsledku v původním jazyce
Deciding which XAI technique is best depends not only on the domain, but also on the given task, the dataset used, the model being explained, and the target goal of that model. We argue that the evaluation of XAI methods has not been thoroughly analyzed in the network security domain, which presents a unique type of challenge. While there are XAI methods applied in network security there is still a large gap between the needs of security stakeholders and the selection of the optimal method. We propose to approach the problem by first defining the stack-holders in security and their prototypical tasks. Each task defines inputs and specific needs for explanations. Based on these explanation needs (e.g. understanding the performance, or stealing a model), we created five XAI evaluation techniques that are used to compare and select which XAI method is best for each task (dataset, model, and goal). Our proposed approach was evaluated by running experiments for different security stakehol ders, machine learning models, and XAI methods. Results were compared with the AutoXAI technique and random selection. Results show that our proposal to evaluate and select XAI methods for network security is well-grounded and that it can help AI security practitioners find better explanations for their given tasks.
Název v anglickém jazyce
Bridging the Explanation Gap in AI Security: A Task-Driven Approach to XAI Methods Evaluation
Popis výsledku anglicky
Deciding which XAI technique is best depends not only on the domain, but also on the given task, the dataset used, the model being explained, and the target goal of that model. We argue that the evaluation of XAI methods has not been thoroughly analyzed in the network security domain, which presents a unique type of challenge. While there are XAI methods applied in network security there is still a large gap between the needs of security stakeholders and the selection of the optimal method. We propose to approach the problem by first defining the stack-holders in security and their prototypical tasks. Each task defines inputs and specific needs for explanations. Based on these explanation needs (e.g. understanding the performance, or stealing a model), we created five XAI evaluation techniques that are used to compare and select which XAI method is best for each task (dataset, model, and goal). Our proposed approach was evaluated by running experiments for different security stakehol ders, machine learning models, and XAI methods. Results were compared with the AutoXAI technique and random selection. Results show that our proposal to evaluate and select XAI methods for network security is well-grounded and that it can help AI security practitioners find better explanations for their given tasks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010020" target="_blank" >VJ02010020: AI-Dojo: Multiagentní testbed pro výzkum a testování umělé inteligence v kyberbezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Conference on Agents and Artificial Intelligence (Volume 3)
ISBN
978-989-758-680-4
ISSN
2184-3589
e-ISSN
2184-433X
Počet stran výsledku
8
Strana od-do
1370-1377
Název nakladatele
Science and Technology Publications, Lda
Místo vydání
Setúbal
Místo konání akce
Rome
Datum konání akce
24. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—