Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375038" target="_blank" >RIV/68407700:21230/24:00375038 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/s24061716" target="_blank" >https://doi.org/10.3390/s24061716</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s24061716" target="_blank" >10.3390/s24061716</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records

  • Popis výsledku v původním jazyce

    The dynamic and evolving nature of mobile networks necessitates a proactive approach to security, one that goes beyond traditional methods and embraces innovative strategies such as anomaly detection and prediction. This study delves into the realm of mobile network security and reliability enhancement through the lens of anomaly detection and prediction, leveraging K-means clustering on call detail records (CDRs). By analyzing CDRs, which encapsulate comprehensive information about call activities, messaging, and data usage, this research aimed to unveil hidden patterns indicative of anomalous behavior within mobile networks and security breaches. We utilized 14 million one-year CDR records. The mobile network used had deployed the latest network generation, 5G, with various sources of network elements. Through a systematic analysis of historical CDR data, this study offers insights into the underlying trends and anomalies prevalent in mobile network traffic. Furthermore, by harnessing the predictive capabilities of the K-means algorithm, the proposed framework facilitates the anticipation of future anomalies based on learned patterns, thereby enhancing proactive security measures. The findings of this research can contribute to the advancement of mobile network security by providing a deeper understanding of anomalous behavior and effective prediction mechanisms. The utilization of K-means clustering on CDR data offers a scalable and efficient approach to anomaly detection, with 96% accuracy, making it well suited for network reliability and security applications in large-scale mobile networks for 5G networks and beyond.

  • Název v anglickém jazyce

    Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records

  • Popis výsledku anglicky

    The dynamic and evolving nature of mobile networks necessitates a proactive approach to security, one that goes beyond traditional methods and embraces innovative strategies such as anomaly detection and prediction. This study delves into the realm of mobile network security and reliability enhancement through the lens of anomaly detection and prediction, leveraging K-means clustering on call detail records (CDRs). By analyzing CDRs, which encapsulate comprehensive information about call activities, messaging, and data usage, this research aimed to unveil hidden patterns indicative of anomalous behavior within mobile networks and security breaches. We utilized 14 million one-year CDR records. The mobile network used had deployed the latest network generation, 5G, with various sources of network elements. Through a systematic analysis of historical CDR data, this study offers insights into the underlying trends and anomalies prevalent in mobile network traffic. Furthermore, by harnessing the predictive capabilities of the K-means algorithm, the proposed framework facilitates the anticipation of future anomalies based on learned patterns, thereby enhancing proactive security measures. The findings of this research can contribute to the advancement of mobile network security by providing a deeper understanding of anomalous behavior and effective prediction mechanisms. The utilization of K-means clustering on CDR data offers a scalable and efficient approach to anomaly detection, with 96% accuracy, making it well suited for network reliability and security applications in large-scale mobile networks for 5G networks and beyond.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

    1424-8220

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    001193064400001

  • EID výsledku v databázi Scopus

    2-s2.0-85188945411