Sound Source Localization and Classification for Emergency Vehicle Siren Detection Using Resource Constrained Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00375301" target="_blank" >RIV/68407700:21230/24:00375301 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/RADIOELEKTRONIKA61599.2024.10524053" target="_blank" >https://doi.org/10.1109/RADIOELEKTRONIKA61599.2024.10524053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA61599.2024.10524053" target="_blank" >10.1109/RADIOELEKTRONIKA61599.2024.10524053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sound Source Localization and Classification for Emergency Vehicle Siren Detection Using Resource Constrained Systems
Popis výsledku v původním jazyce
The present work introduces an intelligent system for sound source localization and classification, focusing on the critical task of detecting emergency vehicle sirens. Leveraging the STM32F411RE microcontroller and SPH0645LM4H microphones, the methodology combines generalized crosscorrelation with phase transformation for precise sound source localization, alongside Mel Frequency Cepstral Coefficients (MFCC) for robust signal processing. A neural network model, expertly trained and deployed on the microcontroller, enables real-time sound classification. The integrated printed circuit board (PCB) with eight LEDs provides visual cues, enhancing emergency vehicle detection. This work contributes significantly to sound localization, digital signal processing, and embedded systems, ultimately improving safety and responsiveness in emergency scenarios. The work is vital for enhancing road safety and emergency response efficiency by providing an intelligent system that accurately identifies and localizes the sound of emergency vehicle sirens, minimizing response times and potential hazards for all road users.
Název v anglickém jazyce
Sound Source Localization and Classification for Emergency Vehicle Siren Detection Using Resource Constrained Systems
Popis výsledku anglicky
The present work introduces an intelligent system for sound source localization and classification, focusing on the critical task of detecting emergency vehicle sirens. Leveraging the STM32F411RE microcontroller and SPH0645LM4H microphones, the methodology combines generalized crosscorrelation with phase transformation for precise sound source localization, alongside Mel Frequency Cepstral Coefficients (MFCC) for robust signal processing. A neural network model, expertly trained and deployed on the microcontroller, enables real-time sound classification. The integrated printed circuit board (PCB) with eight LEDs provides visual cues, enhancing emergency vehicle detection. This work contributes significantly to sound localization, digital signal processing, and embedded systems, ultimately improving safety and responsiveness in emergency scenarios. The work is vital for enhancing road safety and emergency response efficiency by providing an intelligent system that accurately identifies and localizes the sound of emergency vehicle sirens, minimizing response times and potential hazards for all road users.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 34th International Conference Radioelektronika (RADIOELEKTRONIKA)
ISBN
979-8-3503-6216-9
ISSN
2767-9969
e-ISSN
2767-9969
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE Czechoslovakia Section
Místo vydání
Praha
Místo konání akce
Žilina
Datum konání akce
17. 4. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001229165000002