Projection methods for finding the greatest element of the intersection of max-closed convex sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376325" target="_blank" >RIV/68407700:21230/24:00376325 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10479-024-05980-z" target="_blank" >https://doi.org/10.1007/s10479-024-05980-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-024-05980-z" target="_blank" >10.1007/s10479-024-05980-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Projection methods for finding the greatest element of the intersection of max-closed convex sets
Popis výsledku v původním jazyce
We focus on the problem of finding the greatest element of the intersection of max-closed convex sets. For this purpose, we analyze the famous method of cyclic projections and show that, if this method is suitably initialized and applied to max-closed convex sets, it converges to the greatest element of their intersection. Moreover, we propose another projection method, called the decreasing projection, which turns out both theoretically and practically preferable to Euclidean projections in this particular case. Next, we argue that several known algorithms, such as Bellman-Ford and Floyd-Warshall algorithms for shortest paths or Gauss-Seidel variant of value iteration in Markov decision processes, can be interpreted as special cases of iteratively applying decreasing projections onto certain max-closed convex sets. Finally, we link decreasing projections (and thus also the aforementioned algorithms) to bounds consistency in constraint programming.
Název v anglickém jazyce
Projection methods for finding the greatest element of the intersection of max-closed convex sets
Popis výsledku anglicky
We focus on the problem of finding the greatest element of the intersection of max-closed convex sets. For this purpose, we analyze the famous method of cyclic projections and show that, if this method is suitably initialized and applied to max-closed convex sets, it converges to the greatest element of their intersection. Moreover, we propose another projection method, called the decreasing projection, which turns out both theoretically and practically preferable to Euclidean projections in this particular case. Next, we argue that several known algorithms, such as Bellman-Ford and Floyd-Warshall algorithms for shortest paths or Gauss-Seidel variant of value iteration in Markov decision processes, can be interpreted as special cases of iteratively applying decreasing projections onto certain max-closed convex sets. Finally, we link decreasing projections (and thus also the aforementioned algorithms) to bounds consistency in constraint programming.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
1572-9338
Svazek periodika
340
Číslo periodika v rámci svazku
2-3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
811-836
Kód UT WoS článku
001272296700002
EID výsledku v databázi Scopus
2-s2.0-85199008812