End-to-end Differentiable Model of Robot-terrain Interactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376781" target="_blank" >RIV/68407700:21230/24:00376781 - isvavai.cz</a>
Výsledek na webu
<a href="https://differentiable.xyz/papers-2024/paper_30.pdf" target="_blank" >https://differentiable.xyz/papers-2024/paper_30.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
End-to-end Differentiable Model of Robot-terrain Interactions
Popis výsledku v původním jazyce
We propose a differentiable model of robot-terrain interactions that delivers the expected robot trajectory given an onboard camera image and the robot control. The model is trained on a real dataset that covers various terrains ranging from vegetation to man-made obstacles. Since robot-endangering interactions are naturally absent in real-world training data, the consequent learning of the model suffers from training/testing distribution mismatch, and the quality of the result strongly depends on generalization of the model. Consequently, we propose a grey-box, explainable, physics-aware, and end-to-end differentiable model that achieves better generalization through strong geometrical and physical priors. Our model, which functions as an image-conditioned differentiable simulation, can generate millions of trajectories per second and provides interpretable intermediate outputs that enable efficient self-supervision. Our experimental evaluation demonstrates that the model outperforms state-of-the-art methods.
Název v anglickém jazyce
End-to-end Differentiable Model of Robot-terrain Interactions
Popis výsledku anglicky
We propose a differentiable model of robot-terrain interactions that delivers the expected robot trajectory given an onboard camera image and the robot control. The model is trained on a real dataset that covers various terrains ranging from vegetation to man-made obstacles. Since robot-endangering interactions are naturally absent in real-world training data, the consequent learning of the model suffers from training/testing distribution mismatch, and the quality of the result strongly depends on generalization of the model. Consequently, we propose a grey-box, explainable, physics-aware, and end-to-end differentiable model that achieves better generalization through strong geometrical and physical priors. Our model, which functions as an image-conditioned differentiable simulation, can generate millions of trajectories per second and provides interpretable intermediate outputs that enable efficient self-supervision. Our experimental evaluation demonstrates that the model outperforms state-of-the-art methods.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů