MonoForce: Self-supervised Learning of Physics-informed Model for Predicting Robot-terrain Interaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00376785" target="_blank" >RIV/68407700:21230/24:00376785 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS58592.2024.10801353" target="_blank" >https://doi.org/10.1109/IROS58592.2024.10801353</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS58592.2024.10801353" target="_blank" >10.1109/IROS58592.2024.10801353</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MonoForce: Self-supervised Learning of Physics-informed Model for Predicting Robot-terrain Interaction
Popis výsledku v původním jazyce
While autonomous navigation of mobile robots on rigid terrain is a well-explored problem, navigating on deformable terrain such as tall grass or bushes remains a challenge. To address it, we introduce an explainable, physicsaware and end-to-end differentiable model which predicts the outcome of robot-terrain interaction from camera images, both on rigid and non-rigid terrain. The proposed MonoForce model consists of a black-box module which predicts robotterrain interaction forces from onboard cameras, followed by a white-box module, which transforms these forces and a control signals into predicted trajectories, using only the laws of classical mechanics. The differentiable white-box module allows backpropagating the predicted trajectory errors into the black-box module, serving as a self-supervised loss that measures consistency between the predicted forces and groundtruth trajectories of the robot. Experimental evaluation on a public dataset and our data has shown that while the prediction capabilities are comparable to state-of-the-art algorithms on rigid terrain, MonoForce shows superior accuracy on nonrigid terrain such as tall grass or bushes. To facilitate the reproducibility of our results, we release both the code and datasets.
Název v anglickém jazyce
MonoForce: Self-supervised Learning of Physics-informed Model for Predicting Robot-terrain Interaction
Popis výsledku anglicky
While autonomous navigation of mobile robots on rigid terrain is a well-explored problem, navigating on deformable terrain such as tall grass or bushes remains a challenge. To address it, we introduce an explainable, physicsaware and end-to-end differentiable model which predicts the outcome of robot-terrain interaction from camera images, both on rigid and non-rigid terrain. The proposed MonoForce model consists of a black-box module which predicts robotterrain interaction forces from onboard cameras, followed by a white-box module, which transforms these forces and a control signals into predicted trajectories, using only the laws of classical mechanics. The differentiable white-box module allows backpropagating the predicted trajectory errors into the black-box module, serving as a self-supervised loss that measures consistency between the predicted forces and groundtruth trajectories of the robot. Experimental evaluation on a public dataset and our data has shown that while the prediction capabilities are comparable to state-of-the-art algorithms on rigid terrain, MonoForce shows superior accuracy on nonrigid terrain such as tall grass or bushes. To facilitate the reproducibility of our results, we release both the code and datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
ISBN
979-8-3503-7770-5
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
12896-12903
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Abu Dhabi
Datum konání akce
14. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001433985300697