Detecting and Correcting Perceptual Artifacts in Synthetic Face Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377158" target="_blank" >RIV/68407700:21230/24:00377158 - isvavai.cz</a>
Výsledek na webu
<a href="https://cvww2024.sdrv.si/wp-content/uploads/sites/5/2024/02/CVWW2024_Proceedings.pdf" target="_blank" >https://cvww2024.sdrv.si/wp-content/uploads/sites/5/2024/02/CVWW2024_Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting and Correcting Perceptual Artifacts in Synthetic Face Images
Popis výsledku v původním jazyce
We propose a method for detecting and automatically correcting perceptual artifacts on synthetic face images. Recent generative models, such as diffusion models, can produce photorealistic images. However, these models often generate visual defects on the faces of people, especially at low resolutions, which impairs the quality of the images. We use a face detector and a binary classifier to identify perceptual artifacts. The classifier was trained on our dataset of manually annotated synthetic face images generated by a diffusion model, half of which contain perceptual artifacts. We compare our method with several baselines and show that it achieves superior accuracy of 93% on an independent test set. In addition, we propose a simple mechanism for automatically correcting the distorted faces using inpainting. For each face with artifact response, we generate several replacement candidates by inpainting and choose the best one by the lowest artifact score. The best candidate is then back-projected into to the image. Inpainting ensures a seamless connection between the corrected face and the original image. Our method improves the realism and quality of synthetic images.
Název v anglickém jazyce
Detecting and Correcting Perceptual Artifacts in Synthetic Face Images
Popis výsledku anglicky
We propose a method for detecting and automatically correcting perceptual artifacts on synthetic face images. Recent generative models, such as diffusion models, can produce photorealistic images. However, these models often generate visual defects on the faces of people, especially at low resolutions, which impairs the quality of the images. We use a face detector and a binary classifier to identify perceptual artifacts. The classifier was trained on our dataset of manually annotated synthetic face images generated by a diffusion model, half of which contain perceptual artifacts. We compare our method with several baselines and show that it achieves superior accuracy of 93% on an independent test set. In addition, we propose a simple mechanism for automatically correcting the distorted faces using inpainting. For each face with artifact response, we generate several replacement candidates by inpainting and choose the best one by the lowest artifact score. The best candidate is then back-projected into to the image. Inpainting ensures a seamless connection between the corrected face and the original image. Our method improves the realism and quality of synthetic images.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 27th Computer Vision Winter Workshop
ISBN
978-961-96564-0-2
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
38-46
Název nakladatele
Slovenian Pattern Recognition Society
Místo vydání
Ljubljana
Místo konání akce
Terme Olimia
Datum konání akce
14. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—