Image Inpainting Using Wasserstein Generative Adversarial Imputation Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00351375" target="_blank" >RIV/68407700:21240/21:00351375 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-86340-1_46" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-86340-1_46</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-86340-1_46" target="_blank" >10.1007/978-3-030-86340-1_46</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Inpainting Using Wasserstein Generative Adversarial Imputation Network
Popis výsledku v původním jazyce
Image inpainting is one of the important tasks in computer vision which focuses on the reconstruction of missing regions in an image. The aim of this paper is to introduce an image inpainting model based on Wasserstein Generative Adversarial Imputation Network. The generator network of the model uses building blocks of convolutional layers with different dilation rates, together with skip connections that help the model reproduce fine details of the output. This combination yields a universal imputation model that is able to handle various scenarios of missingness with sufficient quality. To show this experimentally, the model is simultaneously trained to deal with three scenarios given by missing pixels at random, missing various smaller square regions, and one missing square placed in the center of the image. It turns out that our model achieves high-quality inpainting results on all scenarios. Performance is evaluated using peak signal-to-noise ratio and structural similarity index on two real-world benchmark datasets, CelebA faces and Paris StreetView. The results of our model are compared to biharmonic imputation and to some of the other state-of-the-art image inpainting methods.
Název v anglickém jazyce
Image Inpainting Using Wasserstein Generative Adversarial Imputation Network
Popis výsledku anglicky
Image inpainting is one of the important tasks in computer vision which focuses on the reconstruction of missing regions in an image. The aim of this paper is to introduce an image inpainting model based on Wasserstein Generative Adversarial Imputation Network. The generator network of the model uses building blocks of convolutional layers with different dilation rates, together with skip connections that help the model reproduce fine details of the output. This combination yields a universal imputation model that is able to handle various scenarios of missingness with sufficient quality. To show this experimentally, the model is simultaneously trained to deal with three scenarios given by missing pixels at random, missing various smaller square regions, and one missing square placed in the center of the image. It turns out that our model achieves high-quality inpainting results on all scenarios. Performance is evaluated using peak signal-to-noise ratio and structural similarity index on two real-world benchmark datasets, CelebA faces and Paris StreetView. The results of our model are compared to biharmonic imputation and to some of the other state-of-the-art image inpainting methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks and Machine Learning – ICANN 2021
ISBN
978-3-030-86339-5
ISSN
—
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
575-586
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Bratislava
Datum konání akce
14. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000711922300046