Machine Learning for Channel Quality Prediction: From Concept to Experimental Validation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00377828" target="_blank" >RIV/68407700:21230/24:00377828 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TWC.2024.3417532" target="_blank" >https://doi.org/10.1109/TWC.2024.3417532</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TWC.2024.3417532" target="_blank" >10.1109/TWC.2024.3417532</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning for Channel Quality Prediction: From Concept to Experimental Validation
Popis výsledku v původním jazyce
We focus on prediction of channel quality between any two devices using Deep Neural Network (DNN) from information already known to mobile networks. The DNN-based prediction reduces a cost of a common pilot-based channel quality measurement in scenarios with many ad-hoc communicating devices. However, collecting a sufficient number of high-quality and well-distributed training samples in real-world is not feasible. Hence, in this paper, we develop and validate a concept of DNN-based channel quality prediction between any two devices based on a low-complexity and easy-to-create digital twin. The digital twin serves for a generation of a large synthetic training dataset for channel quality prediction. As the low-complexity digital twin cannot capture all real-world aspects of the channels, we enhance the digital twin with real-world measured and artificially augmented inputs via transfer learning. The proposed concept is implemented and validated in software defined mobile network. We demonstrate that the propo
Název v anglickém jazyce
Machine Learning for Channel Quality Prediction: From Concept to Experimental Validation
Popis výsledku anglicky
We focus on prediction of channel quality between any two devices using Deep Neural Network (DNN) from information already known to mobile networks. The DNN-based prediction reduces a cost of a common pilot-based channel quality measurement in scenarios with many ad-hoc communicating devices. However, collecting a sufficient number of high-quality and well-distributed training samples in real-world is not feasible. Hence, in this paper, we develop and validate a concept of DNN-based channel quality prediction between any two devices based on a low-complexity and easy-to-create digital twin. The digital twin serves for a generation of a large synthetic training dataset for channel quality prediction. As the low-complexity digital twin cannot capture all real-world aspects of the channels, we enhance the digital twin with real-world measured and artificially augmented inputs via transfer learning. The proposed concept is implemented and validated in software defined mobile network. We demonstrate that the propo
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LTT20004" target="_blank" >LTT20004: Spolupráce s mezinárodním výzkumným centrem v oblasti digitálních komunikačních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Wireless Communications
ISSN
1536-1276
e-ISSN
1558-2248
Svazek periodika
23
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
14605-14619
Kód UT WoS článku
001338574900179
EID výsledku v databázi Scopus
2-s2.0-85197589715