Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influence of applied tensile/compressive stress on He-irradiated SiC: Examining defect evolution through experimental investigation and DFT simulations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378008" target="_blank" >RIV/68407700:21230/24:00378008 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ceramint.2024.09.136" target="_blank" >https://doi.org/10.1016/j.ceramint.2024.09.136</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ceramint.2024.09.136" target="_blank" >10.1016/j.ceramint.2024.09.136</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influence of applied tensile/compressive stress on He-irradiated SiC: Examining defect evolution through experimental investigation and DFT simulations

  • Popis výsledku v původním jazyce

    This study investigates the effects of applied tensile and compressive stresses on the evolution of defects in He-irradiated silicon carbide (SiC) materials. By combining experimental studies with density-functional theory (DFT) simulations, we systematically analyzed the microstructural changes and defect formation mechanisms in SiC under stress. The research focused on He irradiation of SiC at 750 °C, with a fluence of 1 x 1017 He/cm2. The results revealed that the strain resulting from radiation damage depends on the applied stress during irradiation. Moreover, the formation of platelets is influenced by this applied stress: tensile stress promotes platelet growth, while compressive stress inhibits it. DFT simulations further supported these experimental findings by showing that under tensile strain, both carbon vacancies (Cv) and He atoms exhibit low energy barriers for migration. This phenomenon facilitates platelet growth, aligning well with the observations made in the experiments. However, when considering applications like semiconductor thin film transfer, such as the Smart-cut technique, He implantation under tensile stress can actually be advantageous. This approach enables the use of lower He fluence, which in turn reduces the overall cost of the operation. By strategically leveraging the effects of tensile stress on He implantation, it becomes possible to optimize processes like Smart-cut for more efficient and cost-effective thin film transfer in semiconductor manufacturing.

  • Název v anglickém jazyce

    Influence of applied tensile/compressive stress on He-irradiated SiC: Examining defect evolution through experimental investigation and DFT simulations

  • Popis výsledku anglicky

    This study investigates the effects of applied tensile and compressive stresses on the evolution of defects in He-irradiated silicon carbide (SiC) materials. By combining experimental studies with density-functional theory (DFT) simulations, we systematically analyzed the microstructural changes and defect formation mechanisms in SiC under stress. The research focused on He irradiation of SiC at 750 °C, with a fluence of 1 x 1017 He/cm2. The results revealed that the strain resulting from radiation damage depends on the applied stress during irradiation. Moreover, the formation of platelets is influenced by this applied stress: tensile stress promotes platelet growth, while compressive stress inhibits it. DFT simulations further supported these experimental findings by showing that under tensile strain, both carbon vacancies (Cv) and He atoms exhibit low energy barriers for migration. This phenomenon facilitates platelet growth, aligning well with the observations made in the experiments. However, when considering applications like semiconductor thin film transfer, such as the Smart-cut technique, He implantation under tensile stress can actually be advantageous. This approach enables the use of lower He fluence, which in turn reduces the overall cost of the operation. By strategically leveraging the effects of tensile stress on He implantation, it becomes possible to optimize processes like Smart-cut for more efficient and cost-effective thin film transfer in semiconductor manufacturing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ceramics International

  • ISSN

    0272-8842

  • e-ISSN

    1873-3956

  • Svazek periodika

    50

  • Číslo periodika v rámci svazku

    22

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    8

  • Strana od-do

    47902-47909

  • Kód UT WoS článku

    001338962800001

  • EID výsledku v databázi Scopus

    2-s2.0-85203830799