Influence of applied tensile/compressive stress on He-irradiated SiC: Examining defect evolution through experimental investigation and DFT simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378008" target="_blank" >RIV/68407700:21230/24:00378008 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ceramint.2024.09.136" target="_blank" >https://doi.org/10.1016/j.ceramint.2024.09.136</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ceramint.2024.09.136" target="_blank" >10.1016/j.ceramint.2024.09.136</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of applied tensile/compressive stress on He-irradiated SiC: Examining defect evolution through experimental investigation and DFT simulations
Popis výsledku v původním jazyce
This study investigates the effects of applied tensile and compressive stresses on the evolution of defects in He-irradiated silicon carbide (SiC) materials. By combining experimental studies with density-functional theory (DFT) simulations, we systematically analyzed the microstructural changes and defect formation mechanisms in SiC under stress. The research focused on He irradiation of SiC at 750 °C, with a fluence of 1 x 1017 He/cm2. The results revealed that the strain resulting from radiation damage depends on the applied stress during irradiation. Moreover, the formation of platelets is influenced by this applied stress: tensile stress promotes platelet growth, while compressive stress inhibits it. DFT simulations further supported these experimental findings by showing that under tensile strain, both carbon vacancies (Cv) and He atoms exhibit low energy barriers for migration. This phenomenon facilitates platelet growth, aligning well with the observations made in the experiments. However, when considering applications like semiconductor thin film transfer, such as the Smart-cut technique, He implantation under tensile stress can actually be advantageous. This approach enables the use of lower He fluence, which in turn reduces the overall cost of the operation. By strategically leveraging the effects of tensile stress on He implantation, it becomes possible to optimize processes like Smart-cut for more efficient and cost-effective thin film transfer in semiconductor manufacturing.
Název v anglickém jazyce
Influence of applied tensile/compressive stress on He-irradiated SiC: Examining defect evolution through experimental investigation and DFT simulations
Popis výsledku anglicky
This study investigates the effects of applied tensile and compressive stresses on the evolution of defects in He-irradiated silicon carbide (SiC) materials. By combining experimental studies with density-functional theory (DFT) simulations, we systematically analyzed the microstructural changes and defect formation mechanisms in SiC under stress. The research focused on He irradiation of SiC at 750 °C, with a fluence of 1 x 1017 He/cm2. The results revealed that the strain resulting from radiation damage depends on the applied stress during irradiation. Moreover, the formation of platelets is influenced by this applied stress: tensile stress promotes platelet growth, while compressive stress inhibits it. DFT simulations further supported these experimental findings by showing that under tensile strain, both carbon vacancies (Cv) and He atoms exhibit low energy barriers for migration. This phenomenon facilitates platelet growth, aligning well with the observations made in the experiments. However, when considering applications like semiconductor thin film transfer, such as the Smart-cut technique, He implantation under tensile stress can actually be advantageous. This approach enables the use of lower He fluence, which in turn reduces the overall cost of the operation. By strategically leveraging the effects of tensile stress on He implantation, it becomes possible to optimize processes like Smart-cut for more efficient and cost-effective thin film transfer in semiconductor manufacturing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotika a pokročilá průmyslová výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ceramics International
ISSN
0272-8842
e-ISSN
1873-3956
Svazek periodika
50
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
8
Strana od-do
47902-47909
Kód UT WoS článku
001338962800001
EID výsledku v databázi Scopus
2-s2.0-85203830799