Counterexamples in rotundity of norms in Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00378786" target="_blank" >RIV/68407700:21230/24:00378786 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jmaa.2024.128455" target="_blank" >https://doi.org/10.1016/j.jmaa.2024.128455</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2024.128455" target="_blank" >10.1016/j.jmaa.2024.128455</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Counterexamples in rotundity of norms in Banach spaces
Popis výsledku v původním jazyce
We study several classical concepts in the topic of strict convexity of norms in infinite dimensional Banach spaces. Specifically, and in descending order of strength, we deal with Uniform Rotundity (UR), Weak Uniform Rotundity (WUR) and Uniform Rotundity in Every Direction (URED). Our first three results show that we may distinguish between all of these three properties in every Banach space where such renormings are possible. Specifically, we show that in every infinite dimensional Banach space which admits a WUR (resp. URED) renorming, we can find a norm with the same condition and which moreover fails to be UR (resp. WUR). We prove that these norms can be constructed to be Locally Uniformly Rotund (LUR) in Banach spaces admitting such renormings. Additionally, we obtain that in every Banach space with a LUR norm we can find a LUR renorming which is not URED. These results solve three open problems posed by A.J. Guirao, V. Montesinos and V. Zizler. The norms we construct in this first part are dense. In the last part of this note, we solve a fourth question posed by the same three authors by constructing a C infinity -smooth norm in c 0 whose dual norm is not strictly convex. (c) 2024 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Counterexamples in rotundity of norms in Banach spaces
Popis výsledku anglicky
We study several classical concepts in the topic of strict convexity of norms in infinite dimensional Banach spaces. Specifically, and in descending order of strength, we deal with Uniform Rotundity (UR), Weak Uniform Rotundity (WUR) and Uniform Rotundity in Every Direction (URED). Our first three results show that we may distinguish between all of these three properties in every Banach space where such renormings are possible. Specifically, we show that in every infinite dimensional Banach space which admits a WUR (resp. URED) renorming, we can find a norm with the same condition and which moreover fails to be UR (resp. WUR). We prove that these norms can be constructed to be Locally Uniformly Rotund (LUR) in Banach spaces admitting such renormings. Additionally, we obtain that in every Banach space with a LUR norm we can find a LUR renorming which is not URED. These results solve three open problems posed by A.J. Guirao, V. Montesinos and V. Zizler. The norms we construct in this first part are dense. In the last part of this note, we solve a fourth question posed by the same three authors by constructing a C infinity -smooth norm in c 0 whose dual norm is not strictly convex. (c) 2024 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-04776S" target="_blank" >GA23-04776S: Interakce algebraických, metrických, geometrických a topologických struktur na Banachových prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
538
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001238441000001
EID výsledku v databázi Scopus
2-s2.0-85191478952