Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The equivalence between CPCP and strong regularity under Krein-Milman property

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379046" target="_blank" >RIV/68407700:21230/24:00379046 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jfa.2023.110273" target="_blank" >https://doi.org/10.1016/j.jfa.2023.110273</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2023.110273" target="_blank" >10.1016/j.jfa.2023.110273</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The equivalence between CPCP and strong regularity under Krein-Milman property

  • Popis výsledku v původním jazyce

    We obtain a result in the spirit of the well-known W. Schachermayer and H. P. Rosenthal research about the equivalence between Radon-Nikodym and Krein-Milman properties, by showing that, for closed, bounded and convex subsets C of a separable Banach space, under Krein-Milman property for C, one has the equivalence between convex point of continuity property and strong regularity both defined for every locally convex topology on C, containing the weak topology on C. Then, under Krein-Milman property, not only the classical convex point of continuity property and strong regularity are equivalent, but also when they are defined for an arbitrary locally convex topology containing the weak topology. We also show that while the unit ball B of c0 fails convex point of continuity property and strong regularity (both defined for the weak topology), there is a locally convex topology tau on B, containing the weak topology on B, such that B still fails convex point of continuity property for tau, but B surprisingly enjoys strong regularity for tau-open sets. Moreover, B satisfies the diameter two property for the topology tau, that is, every nonempty tau-open subset of B has diameter two even though every tau-open subset of B contains convex combinations of relative tau-open subsets with arbitrarily small diameter, that is, B fails the strong diameter two property for the topology tau. This stresses the known extreme differences up to now between those diameter two properties from a topological point of view.(c) 2023 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    The equivalence between CPCP and strong regularity under Krein-Milman property

  • Popis výsledku anglicky

    We obtain a result in the spirit of the well-known W. Schachermayer and H. P. Rosenthal research about the equivalence between Radon-Nikodym and Krein-Milman properties, by showing that, for closed, bounded and convex subsets C of a separable Banach space, under Krein-Milman property for C, one has the equivalence between convex point of continuity property and strong regularity both defined for every locally convex topology on C, containing the weak topology on C. Then, under Krein-Milman property, not only the classical convex point of continuity property and strong regularity are equivalent, but also when they are defined for an arbitrary locally convex topology containing the weak topology. We also show that while the unit ball B of c0 fails convex point of continuity property and strong regularity (both defined for the weak topology), there is a locally convex topology tau on B, containing the weak topology on B, such that B still fails convex point of continuity property for tau, but B surprisingly enjoys strong regularity for tau-open sets. Moreover, B satisfies the diameter two property for the topology tau, that is, every nonempty tau-open subset of B has diameter two even though every tau-open subset of B contains convex combinations of relative tau-open subsets with arbitrarily small diameter, that is, B fails the strong diameter two property for the topology tau. This stresses the known extreme differences up to now between those diameter two properties from a topological point of view.(c) 2023 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-04776S" target="_blank" >GA23-04776S: Interakce algebraických, metrických, geometrických a topologických struktur na Banachových prostorech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF FUNCTIONAL ANALYSIS

  • ISSN

    0022-1236

  • e-ISSN

    1096-0783

  • Svazek periodika

    286

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

  • Kód UT WoS článku

    001133583000001

  • EID výsledku v databázi Scopus

    2-s2.0-85178593772