The equivalence between CPCP and strong regularity under Krein-Milman property
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379046" target="_blank" >RIV/68407700:21230/24:00379046 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jfa.2023.110273" target="_blank" >https://doi.org/10.1016/j.jfa.2023.110273</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2023.110273" target="_blank" >10.1016/j.jfa.2023.110273</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The equivalence between CPCP and strong regularity under Krein-Milman property
Popis výsledku v původním jazyce
We obtain a result in the spirit of the well-known W. Schachermayer and H. P. Rosenthal research about the equivalence between Radon-Nikodym and Krein-Milman properties, by showing that, for closed, bounded and convex subsets C of a separable Banach space, under Krein-Milman property for C, one has the equivalence between convex point of continuity property and strong regularity both defined for every locally convex topology on C, containing the weak topology on C. Then, under Krein-Milman property, not only the classical convex point of continuity property and strong regularity are equivalent, but also when they are defined for an arbitrary locally convex topology containing the weak topology. We also show that while the unit ball B of c0 fails convex point of continuity property and strong regularity (both defined for the weak topology), there is a locally convex topology tau on B, containing the weak topology on B, such that B still fails convex point of continuity property for tau, but B surprisingly enjoys strong regularity for tau-open sets. Moreover, B satisfies the diameter two property for the topology tau, that is, every nonempty tau-open subset of B has diameter two even though every tau-open subset of B contains convex combinations of relative tau-open subsets with arbitrarily small diameter, that is, B fails the strong diameter two property for the topology tau. This stresses the known extreme differences up to now between those diameter two properties from a topological point of view.(c) 2023 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
The equivalence between CPCP and strong regularity under Krein-Milman property
Popis výsledku anglicky
We obtain a result in the spirit of the well-known W. Schachermayer and H. P. Rosenthal research about the equivalence between Radon-Nikodym and Krein-Milman properties, by showing that, for closed, bounded and convex subsets C of a separable Banach space, under Krein-Milman property for C, one has the equivalence between convex point of continuity property and strong regularity both defined for every locally convex topology on C, containing the weak topology on C. Then, under Krein-Milman property, not only the classical convex point of continuity property and strong regularity are equivalent, but also when they are defined for an arbitrary locally convex topology containing the weak topology. We also show that while the unit ball B of c0 fails convex point of continuity property and strong regularity (both defined for the weak topology), there is a locally convex topology tau on B, containing the weak topology on B, such that B still fails convex point of continuity property for tau, but B surprisingly enjoys strong regularity for tau-open sets. Moreover, B satisfies the diameter two property for the topology tau, that is, every nonempty tau-open subset of B has diameter two even though every tau-open subset of B contains convex combinations of relative tau-open subsets with arbitrarily small diameter, that is, B fails the strong diameter two property for the topology tau. This stresses the known extreme differences up to now between those diameter two properties from a topological point of view.(c) 2023 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-04776S" target="_blank" >GA23-04776S: Interakce algebraických, metrických, geometrických a topologických struktur na Banachových prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF FUNCTIONAL ANALYSIS
ISSN
0022-1236
e-ISSN
1096-0783
Svazek periodika
286
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
001133583000001
EID výsledku v databázi Scopus
2-s2.0-85178593772