Challenges and opportunities in quantum optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379058" target="_blank" >RIV/68407700:21230/24:00379058 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s42254-024-00770-9" target="_blank" >https://doi.org/10.1038/s42254-024-00770-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42254-024-00770-9" target="_blank" >10.1038/s42254-024-00770-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Challenges and opportunities in quantum optimization
Popis výsledku v původním jazyce
Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization - a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization. This Review discusses quantum optimization, focusing on the potential of exact, approximate and heuristic methods, core algorithmic building blocks, problem classes and benchmarking metrics. The challenges for quantum optimization are considered, and next steps are suggested for progress towards achieving quantum advantage. Quantum computing is advancing rapidly, and quantum optimization is a promising area of application. Quantum optimization algorithms - whether provably exact, provably approximate or heuristic - offer opportunities to demonstrate quantum advantage. Systematic benchmarking is crucial to guide research, track progress and further advance understanding of quantum optimization. Theoretical research and empirical research using real hardware can complement each other, in the move towards demonstrating quantum advantage.
Název v anglickém jazyce
Challenges and opportunities in quantum optimization
Popis výsledku anglicky
Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization - a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization. This Review discusses quantum optimization, focusing on the potential of exact, approximate and heuristic methods, core algorithmic building blocks, problem classes and benchmarking metrics. The challenges for quantum optimization are considered, and next steps are suggested for progress towards achieving quantum advantage. Quantum computing is advancing rapidly, and quantum optimization is a promising area of application. Quantum optimization algorithms - whether provably exact, provably approximate or heuristic - offer opportunities to demonstrate quantum advantage. Systematic benchmarking is crucial to guide research, track progress and further advance understanding of quantum optimization. Theoretical research and empirical research using real hardware can complement each other, in the move towards demonstrating quantum advantage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07947S" target="_blank" >GA23-07947S: Identifikace modelu kvantového systému jako problém nekomutativní polynomiální optimalizace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Reviews Physics
ISSN
2522-5820
e-ISSN
2522-5820
Svazek periodika
6
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
718-735
Kód UT WoS článku
001344204600001
EID výsledku v databázi Scopus
2-s2.0-85207968009