Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Challenges and opportunities in quantum optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00379058" target="_blank" >RIV/68407700:21230/24:00379058 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1038/s42254-024-00770-9" target="_blank" >https://doi.org/10.1038/s42254-024-00770-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s42254-024-00770-9" target="_blank" >10.1038/s42254-024-00770-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Challenges and opportunities in quantum optimization

  • Popis výsledku v původním jazyce

    Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization - a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization. This Review discusses quantum optimization, focusing on the potential of exact, approximate and heuristic methods, core algorithmic building blocks, problem classes and benchmarking metrics. The challenges for quantum optimization are considered, and next steps are suggested for progress towards achieving quantum advantage. Quantum computing is advancing rapidly, and quantum optimization is a promising area of application. Quantum optimization algorithms - whether provably exact, provably approximate or heuristic - offer opportunities to demonstrate quantum advantage. Systematic benchmarking is crucial to guide research, track progress and further advance understanding of quantum optimization. Theoretical research and empirical research using real hardware can complement each other, in the move towards demonstrating quantum advantage.

  • Název v anglickém jazyce

    Challenges and opportunities in quantum optimization

  • Popis výsledku anglicky

    Quantum computers have demonstrable ability to solve problems at a scale beyond brute-force classical simulation. Interest in quantum algorithms has developed in many areas, particularly in relation to mathematical optimization - a broad field with links to computer science and physics. In this Review, we aim to give an overview of quantum optimization. Provably exact, provably approximate and heuristic settings are first explained using computational complexity theory, and we highlight where quantum advantage is possible in each context. Then, we outline the core building blocks for quantum optimization algorithms, define prominent problem classes and identify key open questions that should be addressed to advance the field. We underscore the importance of benchmarking by proposing clear metrics alongside suitable optimization problems, for appropriate comparisons with classical optimization techniques, and discuss next steps to accelerate progress towards quantum advantage in optimization. This Review discusses quantum optimization, focusing on the potential of exact, approximate and heuristic methods, core algorithmic building blocks, problem classes and benchmarking metrics. The challenges for quantum optimization are considered, and next steps are suggested for progress towards achieving quantum advantage. Quantum computing is advancing rapidly, and quantum optimization is a promising area of application. Quantum optimization algorithms - whether provably exact, provably approximate or heuristic - offer opportunities to demonstrate quantum advantage. Systematic benchmarking is crucial to guide research, track progress and further advance understanding of quantum optimization. Theoretical research and empirical research using real hardware can complement each other, in the move towards demonstrating quantum advantage.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-07947S" target="_blank" >GA23-07947S: Identifikace modelu kvantového systému jako problém nekomutativní polynomiální optimalizace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nature Reviews Physics

  • ISSN

    2522-5820

  • e-ISSN

    2522-5820

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    718-735

  • Kód UT WoS článku

    001344204600001

  • EID výsledku v databázi Scopus

    2-s2.0-85207968009